首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=ex-∫0x(x-t)f(t)dt,其中f(x)连续,求f(x).
设f(x)=ex-∫0x(x-t)f(t)dt,其中f(x)连续,求f(x).
admin
2021-10-18
44
问题
设f(x)=e
x
-∫
0
x
(x-t)f(t)dt,其中f(x)连续,求f(x).
选项
答案
由f(x)=e
x
-∫
0
x
(x-t)f(t)dt,得f(x)=e
x
-x∫
0
x
f(t)dt+∫
0
x
tf(t)dt,两边对x求导,得f’(x)=e
x
-∫
0
x
f(t)dt,两边再对x求导得f"(x)+f(x)=e
x
,其通解为f(x)=C
1
cosx+C
2
sinax+1/2e
x
,在f(x)=e
2
-∫
0
x
(x-t)f(t)dt中,令x=0得f(0)=1,在f’(x)=e
x/sup>-∫
0
x
f(t)dt中,令x=0得f’(0)=1,于是有C
1
=1/2,C
2
=1/2.故f(x)=1/2(cosx+sinx)+1/2e
x
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/UCy4777K
0
考研数学二
相关试题推荐
设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系()
已知,y1=x,y2=x2,y3=ex为方程y’’+p(x)y’+q(x)y=f(x)的三个特解,则该方程的通解为()
设线性方程组AX=β有3个不同的解γ1,γ2,γ3,r(A)=n-2,n是未知数个数,则()正确.
设f(x)为连续函数,证明:
设f(x)为[0,1]上的单调增加的连续函数,证明:.
设y=f(χ)为区间[0,1]上的非负连续函数.(1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积;(2)设f(χ)在(0,1)内可导,且f′(χ)>-
设f(χ)为连续函数,证明:(1)∫0πχf(sinχ)dχ=∫0πf(sinχ)dχ=πf(sinχ)dχ;(2)∫02πf(|sinχ|)dχ=4f(sinχ)dχ.
求微分方程χy〞+3y′=0的通解.
设非负函数y=y(x)(x≥0)满足微分方程xy’’一y’+2=0,当曲线y=y(x)过原点时,其与直线x=1及y=0所围成的平面区域D的面积为2,求D绕y轴旋转所得旋转体的体积.
随机试题
甲公司2×11年度至2×16年度发生的与一栋办公楼有关的业务资料如下:(1)2×11年1月1日,甲公司与乙公司签订合同,委托乙公司为其建造一栋办公楼。合同约定,该办公楼的总造价为5000万元,建造期为12个月,甲公司于2×11年1月1日向乙公司预
整体墙是指__或洞口很小的剪力墙。
建筑工程第三者责任险包括在()中。
2017年2月,某市税务机关拟对辖区内某房地产开发公司的房产开发项目进行土地增值税清算。该房地产开发公司提供该房产开发项目资料如下:(1)2014年3月以12000万元拍得用于该房地产开发项目的一宗土地,并缴纳契税。(2)2014年5
下列属于根据赫茨伯格双因素理论中的激励因素的有()。
某实验室模拟酸雨,现有浓度为30%和10%的两种盐酸溶液,实验需要将二者混合配置出浓度为16%的盐酸700克备用。那么30%的盐酸需要多少克?
材料一:“甲盗,赃值千钱,乙知其盗,受分,赃不盈一钱。问乙何论?同论。”——《法律答问》材料二:“甲盗钱以买丝,寄乙,乙受,弗知盗,乙论何也
1.将文件夹下ABNQ文件夹中的XUESHI.C文件复制到文件夹中,文件名为USER.FFF。2.将文件夹下LIANG文件夹中的TDENGE文件夹删除。3.为文件夹下GAQU文件夹中的XIAO.BB文件建立名为KUAMS的快捷方式,并存放在文件夹下。
HistorianE.HCarr’sthesisthatalldebatesconcerningtheexplanationofhistoricalphenomenarevolvearound“thequestionof
Thecrewworkedsohardthattheyfinishedtheentireprojectthreedays______ofschedule.
最新回复
(
0
)