首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶实对称矩阵,λ1=一1,λ2=λ3=1是A的特征值,对应于λ1的特征向量为ξ1=[0,1,1]T,求A.
设A是3阶实对称矩阵,λ1=一1,λ2=λ3=1是A的特征值,对应于λ1的特征向量为ξ1=[0,1,1]T,求A.
admin
2019-01-13
31
问题
设A是3阶实对称矩阵,λ
1
=一1,λ
2
=λ
3
=1是A的特征值,对应于λ
1
的特征向量为ξ
1
=[0,1,1]
T
,求A.
选项
答案
λ
2
=λ
3
=1有两个线性无关特征向量ξ
2
,ξ
3
,它们都与ξ
1
正交,故可取ξ
2
=[1,0,0]
T
,ξ
3
=[0,1,一1]
T
,且取正交矩阵 [*] 则 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/U5j4777K
0
考研数学二
相关试题推荐
(1998年)已知函数y=f(χ)在任意点χ处的增量△y=+α,其中α是比△χ(△χ→0)的高阶无穷小,且y(0)=π,则y(1)=【】
(1993年)函数y=y(χ)由方程sin(χ2+y2)+eχ=0所确定,则=_______.
(2014年)求极限
若函数f(x)在(0,+∞)上有定义,在x=1点处可导,且对于任意的正数a,b总有f(ab)=f(a)+f(b),证明:f(x)在(0,+∞)上处处可导,且f’(x)=.
f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0.证明:.
设f(x)在[0,+∞)上连续,0<a<b,且∫A+∞出收敛,其中常数A>0.试证明:
(1)设f(x)是以T为周期的连续函数,试证明:∫0xf(t)dt可以表示为一个以T为周期的函数φ(x)与kx之和,并求出此常数k;(2)求(1)中的∫0x(t)dt;(3)以[x]表示不超过x的最大整数,g(x)=x一[x],求∫0x
设向量组(I)与向量组(Ⅱ),若(I)可由(Ⅱ)线性表示,且r(I)=r(Ⅱ)=r,证明:(I)与(Ⅱ)等价.
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1一λ1)β1+…+(ks一λs)βs=0,则
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足______
随机试题
关于物质结构的叙述,错误的是
浅表淋巴结肿大见于
慢性心房纤颤是指心房纤颤病史( )。
出纳人员在办理收款或付款后,应在()上加盖“收讫"或“付讫”的戳记,以避免重收重付。
家住成都的刘先生和任女士苦于对财务的打理,其家庭资产构成为单纯的银行存款。如何才能分享到中国经济的发展而带来可观的收益,刘先生一家的生活怎样才变得滋润。带着这些疑问,他们咨询了金融理财师。通过谈话,理财师了解到他们的基本情况。一、案例成员四、保险状况
在破产清算前,债权人行使抵消权应当具备的条件有( )。
安安专门从事复员退伍军人安置社会工作,由此可知他平时的工作包括()等内容。
雾霾是对大气中各种悬浮颗粒物含量超标的笼统表述。PM2.5(空气动力学当量直径小于等于2.5微米的颗粒物)被认为是造成雾霾天气的“元凶”。下图为2017年1月某时刻亚洲局部地区海平面等压线(单位:百帕)分布示意图。读图完成问题。该日上海出现雾霾天气的
2015年4月7日,《人民日报》在头版头条刊发文章《三十四年后的追寻—“四有”书记谷文昌》,记叙了这位一直让习近平总书记念念不忘、撰文称赞“在老百姓心中树起了一座不朽丰碑”的县委书记的生平事迹。丰碑是由事业和民心铸成的。一个热爱人民的人,必然得到人民的热爱
NaturalMedicinesSinceearliestdays,humanshaveusedsomekindsofmedicines.Weknowthisbecausehumanshavesurvived.
最新回复
(
0
)