首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设α1=[1,2,0]T,α2=[1,a+2,-3a]T,α3=[-1,-b-2,a+2b]T,β=[1,3,-3]T.试讨论当a,b为何值时, β不能由α1,α2,α3线性表示;
[2004年] 设α1=[1,2,0]T,α2=[1,a+2,-3a]T,α3=[-1,-b-2,a+2b]T,β=[1,3,-3]T.试讨论当a,b为何值时, β不能由α1,α2,α3线性表示;
admin
2019-04-28
61
问题
[2004年] 设α
1
=[1,2,0]
T
,α
2
=[1,a+2,-3a]
T
,α
3
=[-1,-b-2,a+2b]
T
,β=[1,3,-3]
T
.试讨论当a,b为何值时,
β不能由α
1
,α
2
,α
3
线性表示;
选项
答案
设有数k
1
,k
2
,k
3
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
=β. ① 记A=[α
1
,α
2
,α
3
].对矩阵[A|β]施以初等行变换,有 [*] 由于系数矩阵A的秩取决于a及a-b是否为零,下面采用如下的二分法,分三种情况讨论. [*] 当a=0,b为任意常数时,有 [*] 可知秩(A)≠秩([A|β]),故方程组①无解,β不能由α
1
,α
2
,α
3
线性表示.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/TzJ4777K
0
考研数学三
相关试题推荐
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设η1,…,ηS是非齐次线性方程组AX=b的一组解,则k1η1+…+kSηS,为方程组AX=b的解的充分必要条件是______.
设A为三阶矩阵,且|A|=4,则=______.
求幂级数的收敛域,并求其和函数.
设X1,X2,…,Xn(n>2)为取自总体N(0,1)的简单随机样本,为样本均值,记Yi=Xi一,i=1,2,…,n。求:(Ⅰ)Yi的方差D(Yi),i=1,2,…,n;(Ⅱ)Yi与Yn的协方差Cov(Y1,Yn)。
设随机变量X的密度函数f(x)=且P{1<X<2}=P{2<X<3},则常数A=________;B=________;概率P{2<X<4}=________;分布函数F(x)=________。
设A,B为随机事件,且,令(Ⅰ)求二维随机变量(X,Y)的概率分布;(Ⅱ)求X和Y的相关系数ρXY。
两台同样的自动记录仪,每台无故障工作的时间服从参数为5的指数分布。首先开动其中一台,当其发生故障时停用,而另一台自行开动,试求两台记录仪无故障工作的总时间T的概率密度。
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
随机试题
A—currentassetsJ—fixedassetsB—cashinbankK—machineryequipmentC—creditcardL
党的十九大报告提出了新时代党的建设的总要求,从全局和战略的高度,对推进党的伟大工程做出了整体谋划和顶层设计,是指导新时代党的建设的总纲领和总遵循。新时代党的建设的总体布局,在这个总体布局中,贯穿其中所有建设的是()
化湿行气疏肝下气
支气管哮喘患者发作时禁用的药物是()
通常引起经济周期性波动的主要因素是()
净利润就是利润总额扣除()后的净额。
(请根据下文回答)该文日期的写法()。
小鼠杂交瘤细胞表达的单克隆抗体用于人体试验时易引起过敏反应,为了克服这个缺陷,可选择性扩增抗体的可变区基因(目的基因)后再重组表达。下列相关叙述正确的是()。
十八届四中全会上指出,深人开展党风廉政建设和反腐败斗争,严格落实党风廉政建设党委主体责任和纪委监督责任。在党的建设中最早使用“作风”一词的是:
Manypeoplecomplainthatworknowadaysismorestressfulandlessleisurelythaninthepast.Thereisadiscussiononthenews
最新回复
(
0
)