首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
admin
2021-11-25
75
问题
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)=
=r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n-r个线性无关的解向量,设为ξ
1
,ξ
2
,ξ
3
,…,ξ
n-r
。 设η
0
为方程组AX=b的一个特解, 令β
0
=η
0
,β
1
=ξ
1
+η
0
,β
2
=ξ
2
+η
0
,β
3
=ξ
3
+η
0
,...,β
n-r
=ξ
n-r
+η
0
,显然β
0
,β
1
,β
2
,...,β
n-r
为方程组AX=b的一组解。 令k
0
β
0
+k
1
β
1
+k
2
β
2
+...+k
n-r
β
n-r
=0,即 (k
0
+k
1
+...+k
n-r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+...+k
n-r
ξ
n-r
=0 上式两边左乘A得(k
0
+k
1
+...+k
n-r
)b=0 因为b为非零列向量,所以k
0
+k
1
+...+k
n-r
=0,于是 k
1
ξ
1
+k
2
ξ
2
+...+k
n-r
ξ
n-r
=0 注意到ξ
1
,ξ
2
,ξ
3
,…,ξ
n-r
线性无关,所以k
1
=k
2
=...=k
n-r
=0 故β
0
,β
1
,β
2
,...,β
n-r
线性无关,即方程组AX=b存在由n-r+1个线性无关的解向量构成的向量组。 设β
1
,β
2
,...,β
n-r+2
为方程组AX=b的一组线性无关解, 令γ
1
=β
2
-β
1
,γ
2
=β
3
-β
1
,...,γ
n-r+1
=β
n-r+2
-β
1
根据定义,易证γ
1
,γ
2
,...,γ
n-r+1
线性无关,又γ
1
,γ
2
,...,γ
n-r+1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n-r+1个线性无关的解,矛盾。 所以AX=b的任意n-r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n-r+1个。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Tpy4777K
0
考研数学二
相关试题推荐
考虑一元函数f(x)的下列4条性质:①f(x)在[a,b]上连续;②f(x)在[a,b]上可积;③f(x))在[a,b]上可导;④f(x)在[a,b]上存在原函数.以P=>Q表示由性质P可推出性质Q,则有()
已知ζ=(-1,2,-3)T是矩阵A=的一个特征向量。(Ⅰ)试确定参数a,b以及ζ所对应的特征值λ;(Ⅱ)A能否对角化,如果能,试求可逆矩阵P,使得A相似于对角矩阵。
设A是3阶实对称矩阵,λ1,λ2,λ3是A的3个特征值,且满足α≥λ1≥λ2≥λ3≥b,若A一μE是正定矩阵,则参数μ应满足()
设A是n阶矩阵,E+A可逆,其中E是n阶单位矩阵.证明:(Ⅰ)(E—A)(E+A)-1=(E+A)-1(E—A);(Ⅱ)若A是反对称矩阵,则(E一A)(E+A)-1是正交矩阵;(Ⅲ)若A是正交矩阵,则(E—A)(E+A)-1是
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,10,b,4)T问:(I)a,b取何值时,β不能由α1,α2,α3线性表示?(Ⅱ)a,b取何值时,β可由α1,α2,α3线性表示?并写出此表示式.
设方程组有通解k1ξ1+k2ξ2=k1[1,2,1,一1]T+k2[0,一1,一3,2]T.方程组有通解λ1η1+λ2η2=λ1[2,一1,一6,1]T+λ2[一1,2,4,a+8]T.已知方程组有非零解,试确定参数a的值,并求该非零解.
设向量组,α1,α2……αr是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解.证明:向量组β,β+α1,β+α2,…,β+αr线性无关.
设A是n阶矩阵,α是n维列向量,若=r(A),则线性方程组()
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵的秩都等于4,A是4×6矩阵,则()
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
随机试题
A、呕吐早且频繁,腹胀不明显B、呕吐频繁,继而完全性停止排气排便C、呕吐可有可无,有多次少量排气排便D、呕吐晚而次数少,腹胀明显E、既不呕吐,也无腹胀低位肠梗阻()
患者男,32岁。A型血友病患者,因外伤后反复左大腿肿胀4年,左大腿皮肤溃疡4个月入院。入院体查:左大腿皮肤可见瘀斑,左大腿极度肿胀,局部皮温增高,左大腿内侧可见-5cm×5cm左右皮肤破溃,内可探及3cm深窦道,有红色黏稠状分泌物流出,有异味。对该患者
病例对照研究中关于选择病例的方法,正确的是
反映资产情况的账户有()。
某投资者买入了一张面额为1000元、票面年利率为8%,在持有2年后以1050元的价格卖出的债券,那么投资者的持有期收益率为()。
用工单位应当严格控制劳务派遣用工数量,使用的被派遣劳动者数量不得超过其用工总量的10%。该用工总量是指用工单位订立劳动合同人数与使用的被派遣劳动者人数之和。
求助者的症状主要有()。排除求助者精神病性的依据包括()。
综合报告可分三大部分,一是概括说明各项活动的动态,二是点明活动中发生的问题和倾向,三是()。
逆境可以增长人的见解,改善人的心地,锻炼人的体质,使一个青年能够担当起生活的重任,同时能够知道怎样享受人生,这些财富都是一帆风顺者很难获得的。最能表达这段话意思的是:
下面ACL语句中,准确表达“允许访问服务器202.110.10.1的WWW服务”的是()。
最新回复
(
0
)