首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求椭圆x2+4y2=4上一点,使其到直线2x+3y-6=0的距离最短.
求椭圆x2+4y2=4上一点,使其到直线2x+3y-6=0的距离最短.
admin
2021-02-25
54
问题
求椭圆x
2
+4y
2
=4上一点,使其到直线2x+3y-6=0的距离最短.
选项
答案
解法1:设p(x,y)为椭圆x
2
+4y
2
=4上任意一点,则p到直线2x+3y-6=0的距离为[*].求d的最小值点即求d
2
的最小值点.下面利用拉格朗日乘数法求d
2
的最小值点. 设[*],得到方程组 [*] 解上述方程组,得x
1
=8/5,y
1
=3/5;x
2
=-8/5,y
2
=-3/5. 于是 [*] 由问题的实际意义最短距离存在,因此(8/5,3/5)即为所求的极小值点. 解法2:椭圆x
2
+4y
2
=4上任意一点p(x,y)处切线的斜率为[*],平行于直线2x+3y-6=0的切线斜率应满足[*],即3x=8y.由 [*] 解得 x
1
=8/5,y
1
=3/5;x
2
=-8/5,y
2
=-3/5. 于是[*].因此(8/5,3/5)即为所求的极小值点 解法3:椭圆的参数方程为x=2cosφ,y=sinφ,将其代入p(x,y)到直线2x+3y-6=0的距离[*]中,得 [*],其中sinθ=4/5,cosθ=3/5. 当sin(φ+θ)=1时,d达到最小值,而此时x=2cosφ=2sinθ=8/5,y=sinφ=cosθ=3/5.即(8/5,3/5)即为所求的极小值点.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Te84777K
0
考研数学二
相关试题推荐
设3阶矩阵A的特征值为λ1=1,λ2=2,λ3=3,对应的特征向量依次为(1)将β用ξ1,ξ2,ξ3线性表出;(2)求Anβ(n为正整数).
设向量组α1=(a,0,10)T,α2=(一2,1,5)T,α3=(一1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时,回答下列问题:β不可由α1,α2,α3线性表出;
设A,B为n阶矩阵,且r(A)+r(B)<n.证明:A,B有公共的特征向量.
设物体由曲面z=x2+y2和z=2x所围成,其上各点的密度μ等于该点到xOy平面的距离的平方.试求该物体对z轴的转动惯量.
A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,试证明:(1)aij=Aij←→ATA=E且|A|=1;(2)aij=一Aij←→ATA=E且|A|=一1.
设λ为可逆方阵A的特征值,且χ为对应的特征向量,证明:(1)λ≠0;(2)为A-1的特征值,且χ为对应的特征向量;(3)为A*的特征值,且χ为对应的特征向量.
设z=f(2x一y)+g(x,xy),其中函数f(t)二阶可导,g(u,υ)具有连续二阶偏导数,求
设则其中常数P的取值范围是_________.
设三角形三边的长分别为a、b、c,此三角形的面积为S.求此三角形内的点到三边距离乘积的最大值,并求出这三个相应的距离.
设4阶方阵A=[αγ2γ3γ4],B=[βγ2γ3γ4],其中α,β,γ2,γ3,γ4都是4维列向量,且|A|=4,|B|=1,则|A+B|=________.
随机试题
下列哪种成分最适合需要多次输血而有发热的贫血病人
下列哪一项不是造法性条约?()
对不能保证安全使用的不符合国家标准或行业标准的机械设备进行强制性()
关于期货投机与套期保值交易,描述正确的有()。
当销售存在显著的季节波动时,应收账款周转天数和账龄分析表都不能准确反映应收账款的管理状况。()
大华股份有限公司(以下简称“大华公司”)于2006年在上海证券交易所主板上市,普通股总数为5亿股,甲、乙分别持有大华公司31%和23%的股份。截至2013年年底,大华公司净资产额为10亿元,最近3年可分配利润分别为3000万元、2000万元和1000万元。
【B1】【B10】
某校的一项抽样调查显示:该校经常泡网吧的学生中家庭经济条件优越的占80%;学习成绩下降的也占80%,因此家庭条件优越是学生泡网吧的重要原因,泡网吧是学习成绩下降的重要原因。以下哪项为真,最能削弱上述论证?
汉字国标码(GB2312-80)把汉字分成
A、Inacardboardbox.B、Inametalbox.C、Inawoodenbox.D、Inaleatherbox.AWheredidshehavetoputthemoney?
最新回复
(
0
)