首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)∈C[a,b],在(a,b)内二阶可导,且f〞(χ)≥0,φ(χ)是区间[a,b]上的非负连续函数,且∫abφ(χ)dχ=1.证明:∫abf(χ)φ(χ)dχ≥f[∫abχφ(χ)dχ].
设f(χ)∈C[a,b],在(a,b)内二阶可导,且f〞(χ)≥0,φ(χ)是区间[a,b]上的非负连续函数,且∫abφ(χ)dχ=1.证明:∫abf(χ)φ(χ)dχ≥f[∫abχφ(χ)dχ].
admin
2019-03-21
133
问题
设f(χ)∈C[a,b],在(a,b)内二阶可导,且f〞(χ)≥0,φ(χ)是区间[a,b]上的非负连续函数,且∫
a
b
φ(χ)dχ=1.证明:∫
a
b
f(χ)φ(χ)dχ≥f[∫
a
b
χφ(χ)dχ].
选项
答案
因为f〞(χ)≥0,所以有f(χ)≥f(χ
0
)+f′(χ
0
)(χ-χ
0
). 取χ
0
=∫
a
b
χφ(χ)dχ,因为φ(χ)≥0,所以aφ(χ)≤χφ(χ)≤bφ(χ),又∫
a
b
φ(χ)dχ=1,于是有a≤∫
a
b
χφ(χ)dχ=χ
0
≤b.把χ
0
=∫
a
b
χφ(χ)dχ代入f(χ)≥f(χ
0
)+f′(χ
0
)(χ-χ
0
)中,再由φ(χ)≥0,得 f(χ)φ(χ)≥f(χ
0
)φ(χ)+f′(χ
0
)[χφ(χ)-χ
0
φ(χ)], 上述不等式两边再在区间[a,b]上积分,得∫
a
b
f(χ)φ(χ)dχ≥f[∫
a
b
χφ(χ)dχ].
解析
转载请注明原文地址:https://www.kaotiyun.com/show/TGV4777K
0
考研数学二
相关试题推荐
在半径为R的圆的一切内接三角形中,求出其面积最大者.
设z=f(u,v),u=φ(x,y),v=ψ(x,y)具有二阶连续偏导数,求复合函数z=f[φ(x,y),ψ(x,y)]的一阶与二阶偏导数.
求数列极限:(Ⅰ)(M>0为常数);(Ⅱ)设数列{xn}有界,求
求下列平面曲线的弧长:(Ⅰ)曲线9y2=x(x-3)2(y≥0)位于x=0到x=3之间的一段;(Ⅱ)曲线=1(a>0,b>0,a≠b).
设f(x)在[x1,x2]可导,0<x1<x2,证明:ξ∈(x1,x2)使得
设A是m×n矩阵,B是n×m矩阵,则()
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T都是齐次线性方程组AX=0的解.(1)求A的特征值和特征向量.(2)求作正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ.(3)求A及[A-(3/2)E]6.
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。问k为何值时,f(x)在x=0处可导。
3阶实对称矩阵A的特征值为1,2,-2,α1=(1,-1,1)T是A的属于1的特征向量.记B=A5-4A3+E.(1)求B的特征值和特征向量.(2)求B.
随机试题
产业市场的分销渠道一般为
以下哪种因素会增加左心室前负荷
原发性肝癌肝区疼痛的性质为
根据我国2003年的进口税则,协定关税适用于原产于我国参加的含有关税优惠条款的区域性贸易协定的有关缔约方的进口货物,协定关税比最惠国关税更为优惠。()
工业机器人的额定负载是指在规定性能范围内()所能承受的最大负载允许值。
首次发行采用询价方式的,应当安排不低于本次公开发行股票数量的40%优先向通过公开募集方式设立的()基金配售。①证券投资基金②商业财产保险基金③全国社会保障基金④基本养老保险基金
某公司2008年7月1日向银行借人资金60万元,期限6个月,年利率为6%,到期还本,按月计提利息,按季付息。该企业7月31日应汁提的利息为()万元。
《国家行政机关公文处理办法》规定,公文应当加盖印章,可以例外的是()。
Wewillsetoffafterhefinishespacking.
"Cool"isawordwithmanymeanings.Itstraditionalmeaningisusedto【C1】______atemperaturethatisfairlycool.Astheworl
最新回复
(
0
)