首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)连续,证明:∫0x[∫0tf(u)du]dt=∫0xf(t)(x-t)dt.
设f(x)连续,证明:∫0x[∫0tf(u)du]dt=∫0xf(t)(x-t)dt.
admin
2019-09-04
69
问题
设f(x)连续,证明:∫
0
x
[∫
0
t
f(u)du]dt=∫
0
x
f(t)(x-t)dt.
选项
答案
今F(x)=∫
0
x
f(t)dt,则F’(x)=f(x),于是∫
0
x
[∫
0
t
f(u)du]dt=∫
0
x
F(t)dt, ∫
0
x
f(t)(x-t)dt=x∫
0
x
f(x)dt-∫
0
x
tf(t)dt=xF(x)-∫
0
x
tdF(t) =xF(x)-tF(t)|
0
x
+∫
0
x
F(t)dt=∫
0
x
F(t)dt. 命题得证. 方法二 因为[*]∫
0
x
[∫
0
x
f(u)du]dt=∫
0
x
f(u)du, [*]∫
0
x
f(t)(x-t)dt=[*][x∫
0
x
f(t)dt-∫
0
x
tf(t)dt]=∫
0
x
f(t)dt, 所以∫
0
x
[∫
0
x
f(u)du]dt-∫
0
x
f(t)(x-t)dt≡C
0
,取x=0得C
0
=0,故 ∫
0
x
[∫
0
t
f(u)du]dt=∫
0
x
f(t)(x-t)dt.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/SsD4777K
0
考研数学三
相关试题推荐
已知r(A)=r1,且方程组AX=α有解,r(B)=r2,且BY=β无解,设A=[α1,α2,…,αn],B=[β1,β1,…,βn],且r(α1,α2,…,αn,α,β1,β2,…,βn,β)=r,则()
设γ1,γ2,…,γt和η1,η2…ηs分别是Ax=0和Bx=0的基础解系.证明:Ax=0和Bx=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
求(a为常数,0<|a|<e).
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.(1)证明β,Aβ,A2β线性无关;(2)若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
设f(x)=x2+ax+b,证明:|f(1)|,|f(3)|,|f(5)|中至少有一个不小于2.
设随机变量X的概率密度为f(x),已知方差DX=1,而随机变量Y的概率密度为f(一y),且X与Y的相关系数为,记Z=X+Y,求:(1)EZ,DZ;(2)用切比雪夫不等式估计P{|Z|≥2}.
设D是由曲线y=sinx+1与三条直线x=0,x=π,y=0所围成的曲边梯形,求D绕x轴旋转一周所围成的旋转体的体积.
设求
设当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比ex2-1高阶的无穷小,则正整数n等于
设f(x)可导且在x=0处连续,则a=________。
随机试题
PowerPoint2010中提供了很多模板,它们将幻灯片的配色方案、背景和格式组合成各种主题。这些模板称为“______”。
先天性卵巢发育不全综合征,下列哪项不正确
男,52岁。患慢性支气管炎。剧烈咳嗽后突然出现胸痛、呼吸困难伴窒息感,发绀,左肺呼吸音消失,诊断最可能是
当事人以下列财产抵押的,应当办理抵押登记,抵押权自登记时设立的有()。
治理通货紧缩时,要达到改变利率和货币供给量的目标,中央银行可实施的政策包括()。
王某,男性,33岁,已婚,硕士研究生,单身在外工作(夫妻分居)。自我陈述:担心、紧张、烦躁不安、怀疑自己生病2年,自己就诊。2年前,由于工作应酬陪客人喝酒。可能是喝多的原因,我糊涂地与一个歌厅小姐发生了一次性关系,以后再未往来,也无其他类似经历,但我在
求f(x)=的连续区间、间断点并判别其类型.
ItisacknowledgedthatthemodemmusicalshowisAmerica’smostoriginalanddynamiccontributiontowardtheater.Inthelastq
Inthepopularmind,theInternetistherealizationoftheglobalvillage,wheretheflowofinformationandideasisunimpeded
Mostpeopledon’twakeupinthemorning,combtheirhair,andwalkoutthefrontdoorandontotheworldstage.ButBritain’sP
最新回复
(
0
)