首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=xixj. (1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式; (2)二次型g(x)=XTAX是否与f(x1,x2,…,xn)合同?
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=xixj. (1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式; (2)二次型g(x)=XTAX是否与f(x1,x2,…,xn)合同?
admin
2021-11-15
42
问题
设A为n阶实对称可逆矩阵,f(x
1
,x
2
,…,x
n
)=
x
i
x
j
.
(1)记X=(x
1
,x
2
,…,x
n
)
T
,把二次型f(x
1
,x
2
,…,x
n
)写成矩阵形式;
(2)二次型g(x)=X
T
AX是否与f(x
1
,x
2
,…,x
n
)合同?
选项
答案
(1)f(X)=(x
1
,x
2
,…,x
n
)
T
[*] 因为r(A)=n,所以|A|≠0,于是(1/|A|)A
*
=A
-1
,显然A
*
,A
-1
都是实对称矩阵. (2)因为A可逆,所以A的n个特征值都不是零,而A与A
-1
合同,故二次型f(x
1
,x
2
,…,x
n
)与g(X)=X
T
AX规范合同.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Sly4777K
0
考研数学二
相关试题推荐
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.证明:.
设,且存在三阶非零矩阵B,使得AB=O,则a=______,b=_______.
设A为m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()。
设a1,a2,Β1,Β2为三维列向量组,且a1,a2与Β1,Β1都线性无关。证明:至少存在一个非零向量可同时由a1,a2与Β1,Β2线性表示。
设A为4阶矩阵,A=(α1,α2,α3,α4),若Ax=0的基础解系为(1,2,﹣3,0)T,则下列说法中错误的是()
二二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩为_______.
与二次型f=x12+x22+2x32+6x1x2的矩阵A既合同又相似的矩阵是()
二次型f(x1,x2,x3)=x12+4x22+4x32一4x1x2+4x1x3—8x2x3的规范形为()
下列说法正确的是().
设n阶矩阵A,B等价,则下列说法中,不一定成立的是()
随机试题
A.恶心呕吐B.眩晕晕厥C.咳嗽气喘D.腹胀便秘E.脘部绞痛胃气上逆的特点是()
车刀刀头有()组成面。
主板是PC机的核心部件,下列关于PC机主板的叙述,错误的是______。
用自然沉降法采集空气中微生物样品的高度为
下列属于合同终止的原因的是()。
爱岗敬业需要做到()。
语法单位
输入一个整数数组,调整数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半部分。要求时间复杂度为O(n)。
DoLanguagesShapetheWayWeThink?VocabularyandExpressionsperceivedifferentiatefacilitateTheexampleofHolyR
【S1】【S10】
最新回复
(
0
)