首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-a,a)(a>0)内连续,且f′(0)=2. (1)证明:对0<x<a,存在0<θ<1,使得∫0xf(t)dt+∫0-xf(t)dt=x[f(θx)-f(-θx)]; (2)求
设f(x)在(-a,a)(a>0)内连续,且f′(0)=2. (1)证明:对0<x<a,存在0<θ<1,使得∫0xf(t)dt+∫0-xf(t)dt=x[f(θx)-f(-θx)]; (2)求
admin
2022-08-19
50
问题
设f(x)在(-a,a)(a>0)内连续,且f′(0)=2.
(1)证明:对0<x<a,存在0<θ<1,使得∫
0
x
f(t)dt+∫
0
-x
f(t)dt=x[f(θx)-f(-θx)];
(2)求
选项
答案
(1)令F(x)=∫
0
x
f(t)dt+∫
0
-x
f(t)dt,显然F(x)在[0,x]上可导,且F(0)=0,由微分中值定理,存在0<0<1,使得F(x)=F(x)-F(0)=F′(θx)x,即 ∫
0
x
f(t)dt+∫
0
-x
f(t)dt=x[f(θx)-f(-θx)]. [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/SkR4777K
0
考研数学三
相关试题推荐
求曲线y=3-|x2-1|与z轴围成的封闭图形绕y=3旋转一周所得的旋转体的体积.
设f(x)在区间[0,1]上可导,f(1)=x2f(x)dx.证明:存在ξ∈(0,1),使得2f(ξ)+ξf’(ξ)=0.
设f(x)=∫1xe-t2dt,求∫01x2f(x)dx.
(1)求二元函数f(x,y)=x2(2+y2)+ylny的极值.(2)求函数f(x,y)=(x2+2x+y)ey的极值.
设z-f(x,y)=x2arctan=______.
设U=f(x,y,z)有连续的偏导数,y=y(x),z=z(x)分别由方程exy-y=0与ez-xz=0确定,求
设f(x),g(x)在区间[a,b]上连续,且g(x)<f(x)<m,则由曲线y=g(x),y=f(x)及直线x=a,x=b所围成的平面区域绕直线y=m旋转一周所得旋转体体积为().
讨论函数的连续性.
将一均匀的骰子连续扔六次,所出现的点数之和为X,用切比雪夫不等式估计P(14<X<28)=____________.
设f(x)∈C[0,1],f(x)>0.证明积分不等式:lnf(x)dx≥lnf(x)dx.
随机试题
女性不孕最常见的原因是
关于“天癸”的说法错误的是
A.长强B.命门C.水沟D.素髎E.哑门、风府
患者男性,21岁。腰椎穿刺术后4小时,需采用
高温季节施工的混凝土工程,常用的外加剂是()。
根据《中华人民共和国仲裁法》的规定,当事人对仲裁协议有异议的,应当在()提出。
________的结果是质量管理计划,它为项目提出质量控制、质量保证和质量提高方面的措施。
下图是某城市及其郊区年平均气温分布图,读图回答下列问题。试分析在城郊之间建设环境绿地的意义是什么?
一项对东华大学企业管理系94届毕业生的调查的结果看来有些问题,当被调查毕业生被问及其在校时学习成绩的名次时,统计资料表明:有60%的回答者说他们的成绩位居班级的前20%。如果我们已经排除了回答者说假话的可能,那么下面哪一项能够对上述现象给出更合适一些的解释
下列关于软件的叙述中,正确的是()。
最新回复
(
0
)