首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设的一个特征值为λ1=2,其对应的特征向量为ξ1=. 判断A可否对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵,若不可对角化,请说明理由。
设的一个特征值为λ1=2,其对应的特征向量为ξ1=. 判断A可否对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵,若不可对角化,请说明理由。
admin
2021-11-25
55
问题
设
的一个特征值为λ
1
=2,其对应的特征向量为ξ
1
=
.
判断A可否对角化,若可对角化,求可逆矩阵P,使得P
-1
AP为对角矩阵,若不可对角化,请说明理由。
选项
答案
[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/SZy4777K
0
考研数学二
相关试题推荐
设A为3阶实对称矩阵,α1=(1,﹣1,﹣1)T,α2=(﹣2,1,0)T是齐次线性方程Ax=0的基础解系,且矩阵A-6E不可逆,则(Ⅰ)求齐次线性方程组(A-6E)x=0的通解;(Ⅱ)求正交变换x=Qy将二次型xTAx化为标准形;(Ⅲ)求(A-3E
设D是由曲线y=x3与直线所围成的有界闭区域,则二重积分()
设4维向量组a1=(1+a,1,1,1)T,a2=(2,2+a,2,2)T,a3=(3,3,3+a,3)T,a4=(4,4,4,4+a)T,问a为何值时,a1,a2,a3,a4线性相关?当a1,a2,a3,a4线性相关时,求其一个极大线性无关组,并将其
设A为三阶实对称矩阵,α1=(m,-m,1)T是方程组AX=0的解,α2=(m,1,1-m)T是方程组(A+E)X=0的解,则m=_________.
设A为三阶非零方阵,而,且AB=0,则t=().
(1)设n元实二次型f(x1,x2,…,x3)=xTAx,其中A又特征值λ1,λ2,…,λn,且满足λ1≤λ2≤…≤λn.证明对任何n维列向量x,有λ1xTx≤λ2xTx≤…≤λnxTx.(2)设f(x1,x2,x3)=(x1,x2,x3)=xTAx
设函数f(x)对任意的x均满足等式f(1+x)=af(x),且有f’(0)=b,其中a,b为非零常数,则()
设函数f(x)在区间[a,+∞)内连续,且当x>a时,f’(x)>l>0,其中l为常数.若f(a)<0,则在区间(a,a+)内方程f(x)=0的实根个数为()
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵的秩都等于4,A是4×6矩阵,则()
设单位质点在水平面内作直线运动,初速度v|t=0=v0,已知阻力与速度成正比(比例系数为1),问t为多少时此质点的速度为v0/3?并求到此时刻该质点所经过的路程.
随机试题
属于低毒类有机磷农药是
根据房地产估价的合法原则,目前我国有关法律、法规规定不得抵押因而不应作为以抵押为目的的估价对象的房地产有()。
封闭式基金的交易价格主要受()的影响。
北京四合院源于宋代院落式民居,是老北京城最主要的民居建筑。()
神经衰弱的情绪症状不包括()。
简述个体心理发展的特点。
新媒体的发展,尤其是自媒体的兴起,挑战着传统的新闻生产机制。在信息超载的同时,使新闻生产“去中心化”,新闻流动的把关功能_______,不实消息_______网络。弥尔顿设想的“意见的自由市场”的自净功能并未实现,很多情况下谣言往往“_______”真相。
(2011年真题)《中华人民共和国刑法》第384条第1款规定:“国家工作人员利用职务上的便利,挪用公款归个人使用,进行非法活动的,或者挪用公款数额较大、进行营利活动的,或者挪用公款数额较大、超过三个月未还的,是挪用公款罪,处五年以下有期徒刑或者拘役;情节严
启蒙运动
中华老字号(Chinacenturies-old/time-honoredbrands)是指那些历史悠久并拥有良好信誉的中国企业。这些企业往往具有鲜明的中华民族传统文化特征,拥有高品质的产品、技艺或服务,取得广泛的社会认同。同仁堂(Tongrentan
最新回复
(
0
)