首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(99年)设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则 【 】
(99年)设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则 【 】
admin
2017-05-26
87
问题
(99年)设向量β可由向量组α
1
,α
2
,…,α
m
线性表示,但不能由向量组(Ⅰ):α
1
,α
2
,…,α
m-1
线性表示,记向量组(Ⅱ):α
1
,α
2
,…,α
m-1
,β,则 【 】
选项
A、α
m
不能由(Ⅰ)线性表示,也不能由(Ⅱ)线性表示.
B、α
m
不能由(Ⅰ)线性表示,但可由(Ⅱ)线性表示.
C、α
m
可由(Ⅰ)线性表示,也可由(Ⅱ)线性表示.
D、α
m
可由(Ⅰ)线性表示,但不可由(Ⅱ)线性表示.
答案
B
解析
由题设条件,存在常数k
1
,k
2
,…,k
m
使得
k
1
α
1
+k
2
α
2
+…+k
m
α
m
=β (*)
且必有k
m
≠0(否则k
m
=0,则由上式知β可由(Ⅰ)线性表示,这与已知条件矛盾).于是得
即α
m
可由(Ⅱ)线性表示.
另一方面,如果α
m
可由(Ⅰ)线性表示:
α
m
=λ
1
α
1
+λ
2
α
2
+…+λ
m-1
α
m-1
将上式代入(*)式,则得
β=(k
1
+β
m
λ
1
)α
1
+(k
2
+k
m
λ
2
)α
2
+…+(k
m-1
+k
m
λ
m-1
)α
m-1
即β可由(Ⅰ)线性表示,这与已知条件矛盾,故α
m
不能由(Ⅰ)线性表示.
综合以上两方面的结果,即知B正确.
转载请注明原文地址:https://www.kaotiyun.com/show/SRH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 C
设线性方程组x1+λx2+λx3+x4=0;2x1+x2+x3+2x4=0;3x1+(2+λ)x2+(4+μ)x3+4x4=0;已知(1,-1,1,-1)T是该方程组的一个解.试求:方程组满足x2=x3的全部解.
设矩阵A满足A2+A-4层=0,其中E为单位矩阵,则(A-E)-1=________.
A、 B、 C、 D、 D
设α为常数,则级数().
设a1=2,,证明:
在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有2个温控器显示的温度不低于临界温度t0,电炉就断电.以E表示事件“电炉断电”,设T(1)≤T(2)≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于()
已知3阶矩阵B为非零向量,且B的每一个列向量都是方程组(Ⅰ)求λ的值;(Ⅱ)证明|B|=0.
求f(x,y,z)=2x+2y—z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
设p(x)=a+bx+cx2+dx3.当x→0时,若p(x)-tanx是比x3高阶的无穷小,则下列选项中错误的是
随机试题
39.2006年3月,施某与甲公司订立经营用房装修协议,约定由施某负责组织人员施工,装修费用50万元。装修过程中除装修材料外的所有费用一律由施某自付,施工过程中出现任何安全问题.均由施某自行承担,甲公司不承担任何责任。订立协议后.施某即组织人员施工。4月1
A.肥厚型心肌病B.高血压性心肌损害(高血压性心脏病)C.先天性二叶式主动脉瓣D.风湿性心脏瓣膜病E.心脏肿瘤患者男性,57岁,心悸、黑矇6个月,体格检查血压160/100mmHg,心界不大,胸骨左缘第3、4肋间可闻及收缩期杂音,超声心动图检查
发展中医药事业应遵循的原则
国有独资公司的监事会成员不得少于()人。
设f(x,y)=在点(0,0)处连续,则a=________。
设矩阵A=的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化.
在考生文件夹下CCTVA文件夹中新建一个文件夹LEDER。
Usuallyalternatingcurrent(AC)transmissionsufferslowerlossesthandirectcurrent(DC),andthus,ACbecametheindustrys
Theinterview—about2minutesInthisparttheinterlocutorasksquestionstoeachofthecandidatesinturn.Youhavetogive
NextdoortoalunchcounteradvertisingagrilledcheesespecialisagallerywhereVanGogh’s"Irises"sharesthewallswithM
最新回复
(
0
)