首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X1,…,Xn,Xn+1独立同分布,且P(X1=1)=p,P(X1=0)=1-p,记: Yi= (i=1,2,…,n). 求.
设随机变量X1,…,Xn,Xn+1独立同分布,且P(X1=1)=p,P(X1=0)=1-p,记: Yi= (i=1,2,…,n). 求.
admin
2018-08-30
75
问题
设随机变量X
1
,…,X
n
,X
n+1
独立同分布,且P(X
1
=1)=p,P(X
1
=0)=1-p,记:
Y
i
=
(i=1,2,…,n).
求
.
选项
答案
EY
i
=P(X
i
+X
i+1
)=P(X
i
=0,X
i+1
=1)+P(X
i
=1,X
i+1
=0)=2p(1-p),i=1,…,n ∴[*]=2np(1-p), 而E(Y
i
2
)=P(X
i
+X
i-1
=1)=2p(1-p), ∴DY
i
=E(Y
i
2
)-(EY
i
)
2
=2p(1-p)[1-2p(1-p)],i=1,2,…,n. 若l-k≥2,则Y
k
与Y
l
独立,这时cov(Y
k
,Y
l
)=0,而 E(Y
k
Y
k+1
)=P(Y
k
=1,Y
k+1
=1) =P(X
k
+X
k+1
=1,X
k-1
+X
k-2
=1)=P(X
k
=0,X
k+1
=1,X
k+2
=0)+P(X
k
=1,X
k-1
=0,X
k+2
=1) =(1-p)
2
p+p
2
(1-p)=p(1-p), ∴cov(Y
k
,Y
k+1
)=E(Y
k
,Y
k+1
)=EY
k
.EY
k-1
=p(1-p)-4p
2
(1-p)
2
, 故[*]=2np(1-p)[1-2p(1-p)]+2[*]cov(Y
k
,Y
k+1
) =2np(1-p)[1-2p(n-1)]+2(n-1)[p(1-p)-4p
2
(1-p)
2
] =2p(1-p)[2n-6np(1-p)+4p(1-p)-1].
解析
转载请注明原文地址:https://www.kaotiyun.com/show/SMg4777K
0
考研数学一
相关试题推荐
设f(x)=x+x2+…+xn(n≥2).(1)证明方程f(x)=1有唯一的正根x;(2)求.
设f(x)二阶连续可导,,则().
设二维正态随机变量(X,Y)的概率密度为f(x,y),已知条件概率密度fX|Y(x|y)=.试求:(Ⅰ)常数A和B;(Ⅱ)fX(x)和fY(y);(Ⅲ)f(x,y).
将一颗骰子重复投掷n次,随机变量X表示出现点数小于3的次数,Y表示出现点数不小于3的次数.求3X+Y与X一3Y的相关系数.
设随机变量X与Y相互独立,且都在[0,1]上服从均匀分布,试求:(Ⅰ)U=XY的概率密度fU(u);(Ⅱ)V=|X—Y|的概率密度fU(v).
已知随机变量X服从参数为1的指数分布,Y服从标准正态分布,X与Y独立.现对X进行n次独立重复观察,用Z表示观察值大于2的次数,求T=Y+Z的分布函数FT(t).
解下列微分方程:(Ⅰ)y″-7y′+12y=x满足初始条件y(0)=的特解;(Ⅱ)y″+a2y=8cosbx的通解,其中a>0,b>0为常数;(Ⅲ)+y″+y′+y=0的通解.
求下列微分方程的通解:(Ⅰ)y′+y=1;(Ⅱ)y′=;(Ⅲ)x2ydx-(x3+y3)dy=0;(Ⅳ)y′=
随机试题
此时首选的检查是如确诊为急性肝炎,应采用哪项处理方法
疮疡红肿高大,根盘紧柬,灼热疼痛,诊断为
患者男性,54岁。有慢性支气管炎病史,醉酒后突起畏寒高热不愈,咳嗽、咳痰加重,2d来咳大量脓痰并带鲜血,胸片右上肺有大片密度增高的阴影,其中并有透光区。首选哪种药物治疗
国际法院就甲乙两国的争议作出裁决后,甲国拒不履行判决确定的义务。依《国际法院规约》.对此下列哪一说法是正确的?()
Moore公司预计下一年度的销售收入和销售成本分别为$54000000和$36000000。Moore公司调整了存货系统目的是为了增加存货周转率,从当前每年9次增加到每年12次。如果短期借款利息率为8%,公司下一年度的成本将节约:
Denmarkisonceagaindistinguishingitselfintheraceagainstfoodwaste—thistime,withasupermarkethawkingitemsoncedest
"WithtwofriendsIstartedajourneytoGreece,themosthorrendousofalljourneys.Ithadallthedetailsofanightmare:bar
作为信息处理热点技术之一的“多媒体技术”中的媒体,强调的是()。
A、 B、 C、 C
______studentwithalittlecommonsenseshouldbeabletoanswerthequestion.
最新回复
(
0
)