首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设其中ai≠0,bi≠0(i=1,2,…,n),则秩(A) =________.
设其中ai≠0,bi≠0(i=1,2,…,n),则秩(A) =________.
admin
2019-08-11
66
问题
设
其中a
i
≠0,b
i
≠0(i=1,2,…,n),则秩(A) =________.
选项
答案
1.
解析
将A的第1行的
倍加到第i行(1=2,3,…,n)所得矩阵仅有第1行非零,
秩(A)=1.或由A=αβ,其中α= (α
1
,α
2
,…,α
n
)
T
,β= (b
1
,b
2
,…,b
n
),及A≠0,得1≤r(A)=r(αβ)≤r(α)=1,
r(A)=1.
转载请注明原文地址:https://www.kaotiyun.com/show/SCN4777K
0
考研数学二
相关试题推荐
矩阵A=,求解矩阵方程2A=XA-4X.
已知α1,α2都是3阶矩阵A的特征向量,特征值分别为-1和1,又3维向量α3满足Aα3=α2+α3.记P=(α1,α2,α3),求P-1AP=________.
设α,β都是3维列向量,A=ααT+ββT.证明(1)r(A)≤2.(2)如果α,β线性相关,则r(A)<2.
设α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-2,2,0),α5=(2,1,5,10).①求r(α1,α2,α3,α4,α5).②求一个最大线性无关组,并且把其余向量用它线性表示.
设f(x)=∫0xetx-t2dt,求f’(x).
设f(x)与g(x)在[a,b]上连续,且同为单调不减(或同为单调不增)函数,证明:(b-a)∫abf(x)g(x)dx≥∫abf(x)dx∫abg(x)dx.(*)
设f(x)为(-∞,+∞)上的连续奇函数,且单调增加,F(x)=∫0x(2t-x)f(x-t)dt,则F(x)是
设线性方程组为(1)讨论a1,a2,a3,a4取值对解的情况的影响.(2)设a1=a3=k,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
设A是m×n矩阵,B是n×s矩阵,C是m×s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C).
作自变量与因变量变换:u=x+y,v=x-y,w=xy-z,变换方程为w关于u,v的偏微分方程,其中z对x,y有连续的二阶偏导数.
随机试题
男性,37岁。急刹车致使方向盘挤压上腹部16小时。上腹部、腰部及左肩持续性疼痛,伴恶心、呕吐。查体:体温38.4℃,上腹部肌紧张明显,有压痛,反跳痛不明显,无移动性浊音,肠鸣音存在。对明确诊断帮助不大的是
既能祛风解表,又能胜湿、止痛、止痉的药物是()
卵巢非赘生性囊肿除外
A.血行播散B.经淋巴组织C.经口D.腹腔病变直接蔓延E.腰椎病变直接蔓延肠结核的主要感染途径是
前列腺增生症,残余尿过多,使膀胱失去收缩能力,膀胱过度膨胀,尿不自主从尿道口流出,称为
男,55岁。反复不规则胃胀痛3年,胃镜诊断为萎缩性胃窦炎。慢性胃炎活动期判定根据是
某市检察院张某在办理一起受贿案件时,发现犯罪嫌疑人之一系其堂妹,故申请回避并经检察长同意。下列关于张某在申请回避前所取得的证据和进行的诉讼行为效力问题的表述,哪一项是正确的?()(2005年司考,卷二,第24题)
【背景资料】某建筑公司承接一项综合楼任务,建筑面积109828m2,地下3层,地上26层,箱形基础,主体为框架结构。该项目地处城市主要街道交叉路口,是该地区的标志性建筑物。因此,施工单位在施工过程中加强了对工序质量的控制。在第五层楼板钢筋隐蔽
有担保流动资金贷款的对象只能是自然人。()
简述学前儿童科学用脑的具体做法。
最新回复
(
0
)