首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设ξ1,ξ2是非齐次方程组AX=β的两个不同的解,η1,η2为它的导出组AX=0的一个基础解系,则它的通解为( )
设ξ1,ξ2是非齐次方程组AX=β的两个不同的解,η1,η2为它的导出组AX=0的一个基础解系,则它的通解为( )
admin
2018-06-27
82
问题
设ξ
1
,ξ
2
是非齐次方程组AX=β的两个不同的解,η
1
,η
2
为它的导出组AX=0的一个基础解系,则它的通解为( )
选项
A、k
1
η
1
+k
2
η
2
+(ξ
1
-ξ
2
)/2.
B、k
1
η
1
+k
2
(η
1
-η
2
)+(ξ
1
+ξ
2
)/2.
C、k
1
η
1
+k
2
(ξ
1
-ξ
2
)+(ξ
1
-ξ
2
)/2.
D、k
1
η
1
+k
2
(ξ
1
-ξ
2
)+(ξ
1
+ξ
2
)/2.
答案
B
解析
先看特解.(ξ
1
-ξ
2
)/2是AX=0的解,不是AX=β的解,从而(A),(C)都不对.(ξ
1
+ξ
2
)/2是AX=β的解.
在看导出组的基础解系.在(B)中,η
1
,η
1
-η
2
是AX=0的两个解,并且由η
1
,η
2
线性无关容易得出它们也无关,从而可作出AX=0的基础解系,(B)正确.
在(D)中,虽然η
1
,ξ
1
-ξ
2
都是AX=0的解,但不知道它们是否无关,因此(D)作为一般性结论是不对的.
转载请注明原文地址:https://www.kaotiyun.com/show/0ak4777K
0
考研数学二
相关试题推荐
设函数f(x)在x=1的某邻域内连续,且有求f(1)及f’(1);
已知A是3阶矩阵,A*是A的伴随矩阵,如果矩阵A的特征值是1,2,3,耶么矩阵(A*)*的最大特征值是__________.
设函数f(x)在[一l,l]上连续,在点x=0处可导,且f’(0)≠0.求证:给定的x∈(0,l),至少存在一个θ∈(0,1)使得
已知A*是A的伴随矩阵,则=__________.
设二元可微函数F(z,y)在直角坐标系中可写成F(x,y)=f(x)+g(y),其中f(x),g(y)均为可微函数,而在极坐标系中可写成求此二元函数F(x,y).
设不定积分的结果中不含对数函数,求常数α,β,γ,δ应满足的充要条件,并计算此不定积分.
设A是3阶非零矩阵,满足A2=0,则线性非齐次方程组Ax=b(易≠0)的线性无关解向量的个数是_______.
设设存在且不为零,求常数P的值及上述极限.
设区域D是由y=x-1,y=x+1,x=2及坐标轴围成的区域(图3-1),(X,Y)服从区域D上的均匀分布.(1)求(X,Y)的密度函数;(2)求X,Y的边缘密度函数.
求椭圆所围成的公共部分的面积.
随机试题
A.室间隔缺损B.主动脉狭窄C.肺动脉瓣狭窄D.法洛氏四联症E.右位心先天性心脏病右向左分流的是
A.左旋多巴B.苄丝肼C.氟哌啶醇D.硫必利E.苯海索氯丙嗪引起的药源性帕金森综合征的解救药是
2009年5月,某施工企业的第三项目经理部发生管理人员福利费5500元、水电费1000元、办公费5000元。这些费用属于企业的()。
与固定预算法相比,弹性预算法具有的显著特点有()。(2015年学员回忆版)
下列发票中,属于专业发票的是()。
申请人、第三人可以查阅被申请人提出的书面答复、作出具体行政行为的证据、依据和其他有关材料,除涉及国家秘密、商业秘密或者个人隐私外,行政复议机关不得拒绝。()
滨海市对重点中学组织了一次物理统考,并生成了所有考生和每一个题目的得分。市教委要求小罗老师根据已有数据,统计分析各学校及班级的考试情况。请根据考生文件夹下“Excel素材.xlsx”中的数据,帮助小罗完成此项工作。具体要求如下:利用“成绩单”、“小分统
—Whatdoyoudoto______yourliving?—Myjobis______thetablesandIalsodosomeotherthingsintherestaurant.
Whodeterminestheamountaproductcosts?Whohandlesfinancialmatters?
Science,inpractice,dependsfarlessontheexperimentsitpreparesthanonthepreparednessofthemindsofthemenwhowatch
最新回复
(
0
)