首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是对应的齐次方程的解,则
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是对应的齐次方程的解,则
admin
2014-01-26
80
问题
设y
1
,y
2
是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy
1
+μy
2
是该方程的解,λy
1
-μy
2
是对应的齐次方程的解,则
选项
A、
B、
C、
D、
答案
A
解析
[分析] 此题主要考查线性微分方程解的性质和结构.
[详解] 因λy
1
-μy
12
是方程y’+p(x)y=0的解,所以
(λy
1
-μy
2
)’+p(x)(λy
1
-μy
2
)=0,
即 λ[y’
1
+p(x)y
1
]-μ[y’
2
+p(x)y
2
]=0.
由已知得 (λ-μ)q(x)=0,
因为q(x)≠0,所以λ-μ=0,
又λy
1
+μy
21
是非齐次方程y’+p(x)y=q(x)的解,
故 (λy
1
+μy
2
)’+p(x)(λy
1
+μy
2
)=g(x).
即 λ[y’
1
+p(x)y
1
]-μ[y’
2
+p(x)y
2
]=q(x).
由已知得 (λ+μ)q(x)=g(x).
因为q(x)≠0,所以λ+u=1,
解得
[评注] 此题属反问题,题目构造较新颖.
转载请注明原文地址:https://www.kaotiyun.com/show/Rm34777K
0
考研数学二
相关试题推荐
设一设备开机后无故障工作的时间X服从指数分布,平均无故障工作的时间(EX)为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y的分布函数F(y).
设四阶矩阵A=(aij)不可逆,a12的代数余子式A12≠0,a1,a2,a3,a4为矩阵A的列向量组,A*为A的伴随矩阵,则方程组A*x=0的通解为
(2003年)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证必存在ξ∈(0,3)使f’(ξ)=0.
[2007年]设线性方程组(I)与方程(Ⅱ):x1+2x2+x3=a-1.有公共解.求a的值与所有公共解.
(89年)求微分方程y〞+5y′+6y=2e-χ的通解.
(2000年)设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
(89年)若齐次线性方程组只有零解,则λ应满足的条件是_______.
(2012年)证明:一1<x<1。
设线性方程组(1)与方程x1+2x2+x3=a一1(2)有公共解,求a的值及所有公共解。
[2017年]设二次型f(x1,x2,x3)=2x12-x22+ax32+2x1x2-8x1x3+2x2x3在正交变换X=QY下的标准形为λ1y12+λ2y22,求a的值及一个正交矩阵Q.
随机试题
往来艰涩,迟滞不畅的脉象主病可见
发生月经和孕育胎儿的器官称
在项目生命周期的开始阶段,最适宜的成本计划管理方法是()。
凡是与记账有关的人员,都要在记账凭证上签章。()
由于公司经营不善,已经到了连工资都发不下来的地步。但是,你觉得公司凭借特有的技术和产品,还是有希望搞好的,你会()。
2014年4月25号,中国慈善榜在北京发布,同时揭晓中国慈善家捐赠榜、中国企业慈善榜、中国明星慈善榜三张榜单。()董事局主席以3.7亿元的捐赠额荣获新一届“中国首善”称号。(济宁高新)
表示“1962年10月27日”的日期常量应该写为【】。
有以下程序#include<stdio.h>intf(intx[],intn){if(n>1)returnx[n-1]+f(x,n-1)*10;elsereturnx
F
OnceshamewasaveryBritishemotion.Itgovernedpeople’sliveslongafterstocksandduckingstoolswereabolished.Shakespea
最新回复
(
0
)