首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,α4是三维非零列向量,则下列结论 ①若α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关; ②若α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关; ③若r(α1,α1+α2,α2+α3)=r
已知α1,α2,α3,α4是三维非零列向量,则下列结论 ①若α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关; ②若α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关; ③若r(α1,α1+α2,α2+α3)=r
admin
2019-05-17
43
问题
已知α
1
,α
2
,α
3
,α
4
是三维非零列向量,则下列结论
①若α
4
不能由α
1
,α
2
,α
3
线性表出,则α
1
,α
2
,α
3
线性相关;
②若α
1
,α
2
,α
3
线性相关,α
2
,α
3
,α
4
线性相关,则α
1
,α
2
,α
4
也线性相关;
③若r(α
1
,α
1
+α
2
,α
2
+α
3
)=r(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
),则α
4
可以由α
1
,α
2
,α
3
线性表出。
其中正确的个数是( )
选项
A、0。
B、1。
C、2。
D、3。
答案
C
解析
因为α
1
,α
2
,α
3
,α
4
是三维非零列向量,所以α
1
,α
2
,α
3
,α
4
必线性相关。若α
1
,α
2
,α
3
线性无关,则α
4
必能由α
1
,α
2
,α
3
线性表示,可知结论①正确。令α
1
=(1,0,0)
T
,α
2
=(0,1,0)
T
,α
3
=(0,2,0)
T
,α
4
=(0,0,1)
T
,则α
1
,α
2
,α
3
线性相关,α
2
,α
3
,α
4
线性相关,但α
1
,α
2
,α
4
线性无关,可知结论②错误。
由于 (α
1
,α
1
+α
2
,α
2
+α
3
)→(α
1
,α
2
,α
2
+α
3
)→(α
1
,α
2
,α
3
,(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
)→(α
4
,α
1
,α
2
,α
3
)→(α
1
,α
2
,α
3
,α
4
),所以r(α
1
,α
1
+α
2
,α
2
+α
3
)=r(α
1
,α
2
,α
3
)=r(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
)=r(α
1
,α
2
,α
3
,α
4
),则当r(α
1
,α
1
+α
2
,α
2
+α
3
)=r(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
)时,可得r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,α
4
),因此α
4
可以由α
1
,α
2
,α
3
线性表示。可知结论③正确。所以选C。
转载请注明原文地址:https://www.kaotiyun.com/show/RgV4777K
0
考研数学二
相关试题推荐
证明不等式:χarctanχ≥ln(1+χ2).
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
用待定系数法求方程yy〞+2yˊ=5的特解时,应设特解[].
如图3—1,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf’(x)dx等于()
过点P(0,)作抛物线y=的切线,该切线与抛物线及x轴围成的平面区域为D,求该区域分别绕x轴和y轴旋转而成的体积.
过点(0,1)作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点,区域D由L与直线AB围成。求区域D的面积及D绕x轴旋转一周所得旋转体的体积。
设A,B均为n阶矩阵,A可逆,且A~B,则下列命题中①AB~BA;②A2~B2;③AT~BT;④A-1~B-1。正确的个数为()
设A为n阶方阵,齐次线性方程组Ax=0有两个线性无关的解向量,A*是A的伴随矩阵,则()
A和B都是n阶矩阵.给出下列条件①是数量矩阵.②A和B都可逆.③(A+B)2=A2+2AB+B2.④AB=CE.⑤(AB)2=A2B2.则其中可推出AB=BA的有()
随机试题
不寐多梦,甚则彻夜不眠,急躁易怒,伴头晕头胀,头痛欲裂,目赤耳鸣,便秘溲赤,舌红苔黄,脉弦而数。治疗宜选
肝移植是治疗终末期肝病的唯一治疗手段,移植的术前、术中和术后均需要大量输注血液制品,以提高肝脏移植的效果。下列哪个不是肝脏移植输血后的并发症
(2011年、2010年)按在给水系统中的作用,给水泵站一般分为送水泵站、加压泵站、循环泵站和()。
限额以上的批发企业是指()。
美国心理学家吉尔福特提出了智力形态理论,主张可以将人的智力解释为两种不同的形态:流体智力和晶体智力。()
资料1农业是立国之本。强国之基。2015年2月1日,指导2015年全国“三农”工作的中央一号文件全文发布。这份文件题为《关于加大改革创新力度加快农业现代化建设的若干意见》,全文约12000字,共分5个部分32条。文件要求在经济发展新常态下,继续强
甲乙签订合同,约定甲向乙出售家具。在履行合同过程中的下列何种情况下。甲可以将家具提存?()
A.良性肿瘤B.恶性肿瘤C.非肿瘤性良性病变D.癌前病变类癌是
有的人“聪明早慧”,而有的人则“大器晚成”,这说明人的身心发展具有
ModesofTransportation Thereareavarietyofmeansfortransportation.Usually,thechoiceoftransportationdependsonthe
最新回复
(
0
)