首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
admin
2017-09-15
68
问题
设A=
有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
因为A有三个线性无关的特征向量,所以λ=2的线性无关的特征向量有两个,故r(2E-A)=1, 而2E-A=[*] 所以χ=2,y=-2. 由|λE-A|=[*]=(λ-2)
2
(λ-6)=0得λ
1
=λ
2
=2,λ
3
=6 由(2E-A)X=0得λ=2对应的线性无关的特征向量为 [*] 由(6E-A)X=0得λ=6对应的线性无关的特征向量为α
3
=[*] 令P=[*],则有P
-1
AP=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/qBk4777K
0
考研数学二
相关试题推荐
[*]
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
证明曲线有位于同一直线上的三个拐点.
设A为3阶实对称矩阵,A的秩为2,且求矩阵A.
设A为3阶实对称矩阵,A的秩为2,且求A的所有特征值与特征向量;
设n,元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
n阶方阵A具有n个不同的特征值是A与对角阵相似的().
n阶方阵A具有n个不同的特征值是A与对角阵相似的().
设矩阵A=已知线性方程组AX=β有解但不唯一,试求(Ⅰ)a的值;(Ⅱ)正交矩阵Q,使QTAQ为对角矩阵.
设矩阵,问当k为何值时,存在可逆矩阵P,使得P-1AP为对角矩阵?并求出P和相应的对角矩阵.
随机试题
电气原理图一般分为主电路和()。
3岁女孩,因经常反复发生细菌感染来诊治,体检:精神状态好,心肺听诊正常,肝、脾及淋巴结不大,扁桃体很小,为确诊下列哪项检查最重要
关于肝硬化的叙述中正确的是
截瘫病人排便排尿护理中不妥的是
基本会计岗位可以分为()。
批发商需要构筑一般的零售业物流信息系统就能代行零售物流。
教师是教育者,其根本任务是()。
老年人的个性类型包括()
Theyoungmanwhocametothedoor—hewasaboutthirty,perhaps,withahandsome,smilingface—didn’tseemtofindmylatenesso
Mybossorderedthatthelegaldocuments______tohimbeforelunch.
最新回复
(
0
)