首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
admin
2021-11-15
80
问题
设A=(α
1
,α
2
,α
3
,α
4
,α
5
),其中α
1
,α
3
,α
5
线性无关,且α
2
=3α
1
-α
3
-α
5
,α
4
=2α
1
+α
3
+6α
5
,求方程组AX=0的通解.
选项
答案
因为α
1
,α
3
,α
5
线性无关,又α
2
,α
4
可由α
1
,α
3
,α
5
线性表示,所以r(A)=3,齐次线性方程组AX=0的基础解系含有两个线性无关的解向量. 由α
2
=3α
1
-α
3
-α
5
,α
4
=2α
1
+α
3
+6α
5
得方程组AX=0的两个解为ξ
1
=(3,-1,-1,0,-1)
T
,ξ
2
(2,0,1,-1,6)
T
, 故AX=0的通解为k
1
(3,-1,-1,0,-1)
T
+k
2
(2,0,1,-1,6)
T
(k
1
,k
2
为任意常数).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/RYy4777K
0
考研数学二
相关试题推荐
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解。
用变量代换x=lnt将方程化为y关于t的方程,并求原方程的通解。
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数。
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,...,ξr与η1,η2,...,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,...,ξr,η1,η2,...,ηs线性无关。
证明线性方程组有解的充分必要条件是方程组是同解方程组。
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又且AB=O,求方程组AX=0的通解。
设四阶矩阵A=(α1,α2,α3,α4),方程组Ax=B的通解为(1,2,2,1)T+c(1,﹣2,4,0)T,c为任意常数。记B=(α3,α2,α1,β-α4),求Bx=α1-α2的通解。
已知y1*=e﹣2x+xe﹣x,y2*=2xe﹣2x+xe﹣x,y3*=e﹣2x+xe﹣x+2xe﹣2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个解。(Ⅰ)求这个方程和它的通解;(Ⅱ)设y=y(x)是该方程满足y(0)=0,y’(0
设Φ1(x),Φ2(x),Φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为()。
随机试题
男性,70岁,有长期便秘史,突然腹痛、腹胀2天,未吐,少量黏液便1次,未排气,2年前曾有类似发作,查体可见全腹高度膨胀,左下腹可见巨大肠型,有轻度压痛、反跳痛,肠鸣音亢进。该病人的医疗诊断可能为
保持子宫前倾位置的主要韧带是
某市越江隧道工程全部由政府投资。该项目为该市建设规划的重要项目之一,且已列入地方年度固定资产投资计划,设计概算已经主管部门批准,施工图及有关技术资料齐全。该项目拟采用BOT方式建设,市政府正在与有意向的BOT项目公司洽谈。为赶工期政府方出面决定对该项目进行
下列关于石砌墩台施工的说法错误的是()。
选择固定汇率制度,即意味着( )。
劳动保障监察,应把握以下原则()。
下列各项中,应计入营业费用的有()。
张某是某一公安机关的法医,在一起刑事案件的法庭审判过程中,张某被法院聘请担任了该案件的鉴定人。但本案的被告人却对张某提出了回避的申请。依照有关规定,有权对张某是否回避作出决定的是()。
生息资产是考查银行盈利性的一个指标,生息资产包括()。
Duringthetraditionalweddingceremony,thebrideandthebridegroompromiseeachotherlifelongdevotion.Yet,aboutoneouto
最新回复
(
0
)