首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y1(x)、y2(x)为二阶变系数齐次线性方程y’’+P(x)y’+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
设y1(x)、y2(x)为二阶变系数齐次线性方程y’’+P(x)y’+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
admin
2020-03-01
72
问题
设y
1
(x)、y
2
(x)为二阶变系数齐次线性方程y’’+P(x)y’+q(x)y=0的两个特解,则C
1
y
1
(x)+C
2
y
2
(x)(C
1
,C
2
为任意常数)是该方程通解的充分条件为
选项
A、y
1
(x)y’
2
(x)-y
2
(x)y’
1
(x)=0.
B、y
1
(x)y’
2
(x)-y
2
(x)y’
1
(x)≠0.
C、y
1
(x)y’
2
(x)+y
2
(x)y’
1
(x)=0.
D、y
1
(x)y’
2
(x)+y
2
(x)y’
1
(x)≠0.
答案
B
解析
根据题目的要求,y
1
(x)与y
2
(x)应该线性无关,即
(常数).反之,若这个比值为常数,即y
1
(x)=λy
2
(x),那么y’
1
(x)=λy’
2
(x),利用线性代数的知识,就有y
1
(x),y’
2
(x)-y
2
(x)y’
1
(x)=0.所以,(B)成立时,y
1
(x),y
2
(x)一定线性无关,应选(B).
转载请注明原文地址:https://www.kaotiyun.com/show/R8A4777K
0
考研数学二
相关试题推荐
设当x→0时,α是β的().
已知函数f(x,y)在点(0,0)的某个邻域内连续,且,则
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于
设函数u(x,y)=ψ(x+y)+ψ(x—y)+∫x-yx+yψ(t)dt,其中函数ψ具有二阶导数,ψ具有一阶导数。则必有
n阶矩阵A和B具有相同的特征值是A和B相似的()
设A是5阶方阵,且A2=O,则r(A*)=___________.
设有微分方程y′-2y=φ(χ),其中φ(χ)=试求在(-∞,+∞)内的连续函数为_______,y=y(χ),使之在(-∞,1),(1,+∞)内都满足所给方程,且满足条件y(0)=0.
设f(x)为连续函数,a与m是常数且a>0,将二次积分化为定积分,则I=__________.
[2006年]试确定A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
[2015年]设函数y=y(x)是微分方程y"+y′一2y=0的解,且在x=0处y(x)取得极值3,则y(x)=________.
随机试题
______,anelaborateandfantasticstory,isknownasthebestofthefinalromanceswrittenbyWilliamShakespeare.()
A.利湿化浊,清热解毒B.利湿清热,疏风止痛C.利水消肿,理气健脾D.温肾利湿,分清化浊五皮散的功用是
铺麻醉床错误的操作步骤是()。
一般病室温度保持在()较为适宜。
只承受弯矩而不传递转矩的轴为()。
一位数学教师不能正确解释圆周率的含义,说明他缺乏()。
清退工作的意义在于()。
当你把社会看作一个复杂的系统的时候,重视多种因素的动态协调,才会更好地促进社会的和谐。假如遇到问题,就从概念出发,进行简单的定性和判断,强求一致,非此即彼。这种思维的简单化、片面化、极端化.都与和谐社会的要求格格不人。这段话的主旨是()。
请在【答题】菜单下选择【进入考生文件夹】命令,并按照题目要求完成下面的操作。注意:以下的文件必须都保存在考生文件夹下。销售部助理小王需要针对2012年和2013年的公司产品销售情况进行统计分析,以便制订新的销售计划和工作任务。现在,请按
Apreviouslyunknowndisease,SARShasenteredourdailyvocabulary.Nowweliveinits【C1】______WhileSARS【C2】______centerstag
最新回复
(
0
)