首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有
admin
2019-05-08
85
问题
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有
选项
答案
考察带拉格朗日余项的一阶泰勒公式:[*]有 f(x)=f(c)+f’(c)(x-c)+[*]f"(ξ)(x-c)
2
, (*) 其中ξ=c+θ(x-c),0<θ<1. 在(*)式中,令x=0,得 f(0)=f(c)+f’(c)(-c)+[*]f"(ξ)c
2
,0<ξ
1
<c<1; 在(*)式中,令x=1,得 f(1)=f(c)+f’(c)(1-c)+[*]f"(ξ
2
)(1-c)
2
,0<c<ξ
2
<1. 上面两式相减得 f(1)-f(0)=f’(c)+[*][f"(ξ2)(1-c)
2
-f"(ξ
1
)c
2
]. 从而f’(c)=f(1)-f(0)+[*][f"(ξ
1
)c
2
-f"(ξ
2
)(1-c)
2
],两端取绝对值并放大即得 [*] 其中利用了对任何c∈(0,1)有(1-c)
2
≤1-c,c
2
≤c,于是(1-c)
2
+c
2
≤1.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/QbJ4777K
0
考研数学三
相关试题推荐
设ξ和η是独立同分布的两个随机变量。已知ξ的分布律为P{ξ=i}=,i=1,2,3,又设X=max{ξ,η},Y=min{ξ,η}。(Ⅰ)写出二维随机变量(X,Y)的分布律;(Ⅱ)求E(X)。
设二维随机变量(X,Y)在区域G={(x,y)|1≤x+y≤2,0≤y≤1}上服从均匀分布。试求:(Ⅰ)(x,y)的边缘概率密度fX(x)和fY(y);(Ⅱ)Z=X+Y的概率密度fZ(y)(z)。
已知随机变量X服从二项分布,且E(X)=2.4,D(X)=1.44,则二项分布的参数n,P的值为()
设随机变量X与Y相互独立,X的概率分布为P{X=i}=(i=一1,0,1),Y的概率密度为fY(y)=记Z=X+Y。(Ⅰ)求P{Z=|X=0};(Ⅱ)求Z的概率密度fZ(z)。
若在区间(0,1)上随机地取两个数u,υ,则关于x的一元二次方程x2—2υx+u=0有实根的概率为________。
设二维随机变量(X,Y)的概率密度为求:(Ⅰ)(X,Y)的边缘概率密度fX(x),fY(y);(Ⅱ)Z=2X—Y的概率密度fZ(z)。
设随机变量X和Y的相关系数为0.9,若Z=2X一1,则Y与Z的相关系数为________。
设随机变量且P{|X|≠|Y|}=1。(Ⅰ)求X与Y的联合分布律,并讨论X与Y的独立性;(Ⅱ)令U=X+Y,V=X—Y,讨论U与Y的独立性。
假设X是在区间(0,1)内取值的连续型随机变量,而Y=1一X。已知P{X≤0.29}=0.75,则满足P{Y≤k}=0.25的常数k=________。
-3.把行列式的各行都加到第1行,得
随机试题
1858年,英国和法国等迫使清政府签订的不平等条约是
简述尊重需要的主要内容。
脾动脉瘤超声表现下述正确的是
对电离辐射致癌效应的特点,叙述不对的一项是
主动脉夹层一旦诊断明确应立即采取下列哪项处理
本患者首先应采取的治疗方法是治疗后眼压正常,房角:右眼4个象限均为窄Ⅲ,加压后3个象限可开放;左眼4个象限均为窄Ⅳ,加压后不能开放。建议患者做哪项治疗
痞满的主要病机在于
根据《行政复议法》的规定,可以申请行政复议的事项是( )。
以下()属于资产管理业务的管理风险。
标志着教育学成为一门学科的是()的出版。
最新回复
(
0
)