首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设ξ和η是独立同分布的两个随机变量。已知ξ的分布律为P{ξ=i}=,i=1,2,3,又设X=max{ξ,η},Y=min{ξ,η}。 (Ⅰ)写出二维随机变量(X,Y)的分布律; (Ⅱ)求E(X)。
设ξ和η是独立同分布的两个随机变量。已知ξ的分布律为P{ξ=i}=,i=1,2,3,又设X=max{ξ,η},Y=min{ξ,η}。 (Ⅰ)写出二维随机变量(X,Y)的分布律; (Ⅱ)求E(X)。
admin
2018-01-12
45
问题
设ξ和η是独立同分布的两个随机变量。已知ξ的分布律为P{ξ=i}=
,i=1,2,3,又设X=max{ξ,η},Y=min{ξ,η}。
(Ⅰ)写出二维随机变量(X,Y)的分布律;
(Ⅱ)求E(X)。
选项
答案
(Ⅰ)X,Y可能的取值均为1,2,3。 P{X=1,Y=1}=P{ξ=1,η=1}=P{ξ=1}P{η=1}=[*] 同理 P{X=2,Y=2}=P{X=3,Y=3}=[*] P{X=2,Y=1}=P{ξ=2,η=1}+P{ξ=1,η=2} =2.P{ξ=1}.P{η=2}=2×[*] 同理P{X=3,Y=1}=P{X=3,Y=2}=[*] 由题意可知X≥y始终成立,即{X<Y}是不可能事件,故 P{X=1,Y=2}=P{X=1,Y=3}=P{X=2,Y=3}=0。 (X,Y)的联合分布律如下表: [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/KCX4777K
0
考研数学三
相关试题推荐
设总体的密度为:从X中抽得简单样本X1,…,Xn。试求未知参数θ的矩估计和最大似然估计。
设总体X的方差为1,根据来自X的容量为100的简单随机样本,测得样本均值为5.则X的数学期望的置信度近似等于0.95的置信区间为________。
对于任意两事件A和B()
设A、B是两个随机事件,且<P(A)<1,P(B)>0,P(B|A)=,则必有()
将一枚匀称的硬币独立地掷三次,记事件A=“正、反面都出现”;B=“正面最多出现一次”;C=“反面最多出现一次”,则下列结论中不正确的是()
设总体X的分布函数为其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本,求:(I)β的矩估计量;(Ⅱ)β的最大似然估计量.
对于任意两事件A和B,若P(AB)=0,则()
已知X1,…,Xn是来自总体X容量为n的简单随机样本,其均值和方差分别为(I)如果E(X)=μ,D(X)=σ2,试证明:的相关系数ρ=-(Ⅱ)如果总体X服从正态分布N(0,σ2),试证明:协方差Cov(X1,S2)=0.
设总体X一N(μ,σ2),μ,σ2未知,X1,X2,…Xn是来自X的样本,试确定常数C,使CY=C[(X1一X2)2+(X3一X4)2+(X5一X6)2]的期望为σ2.
设从均值为μ,方差σ2>0的总体中分别抽取容量为n1,n2的两个独立样本,样本均值分别为证明:对于任何满足条件a+b=1的常数a,b,T=是μ的元偏估计量,并确定常数a,b,使得方差DT达到最小.
随机试题
心力衰竭病人的饮食,下列不妥的是
阴道镜下表面构型为脑回状,局部血管管腔增大,螺旋状,血管间距增大,碘不着色。可能存在下列哪种病变
A.低钾血症B.等渗性缺水C.高渗性缺水D.低渗性缺水E.低钙血症急性低位小肠梗阻,心率120次/分,血压90/60mmHg。尿少。无口渴。考虑存在
下列关于囊材的正确叙述是()。
甲、乙是邻居。乙出国2年,甲将乙的停车位占为己用。期间,甲将该停车位出租给丙,租期1年。期满后丙表示不再续租,但仍继续使用该停车位。下列哪一表述是错误的?(2012年卷三第8题)
某新建一级公路土方路基工程施工,该工程取土困难。K10+000~K12+000段路堤位于横坡陡于1:5的地面,施工方进行了挖台阶等地基处理,然后采用几种不同土体填料分层填筑路基,填筑至0~80cm,施工方选择细粒土,采用18t光轮压路机,分两层碾压。两层碾
下列关于合同成立的说法中,错误的是()。
LikealotofearlessNewYorkers,Iamgenerallyconfusedbyburstsofpopulistoutrageoverhighgasprices.ButIhavealways
TimeWarnerInc.ChiefExecutiveOfficerRichardParsonssaidonFridaythatthecompanyexpectsitsbig-budgetmovie"Troy,"wh
Whydoesoneperson’smouthwateratthemerementionofoysters.【C1】______someoneelse’scurlsindisgust?Puzzling【C2】______
最新回复
(
0
)