首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解为( ).
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解为( ).
admin
2021-08-02
90
问题
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y
1
(x),y
2
(x),C为任意常数,则该方程的通解为( ).
选项
A、C[y
1
(x)—y
2
(x)]
B、y
1
(x)+C[y
1
(x)一y
2
(x)]
C、C[y
1
(x)+y
2
(x)]
D、y
1
(x)+C[y
1
(x)+y
2
(x)]
答案
B
解析
由于y
1
(x),y
2
(x)为非齐次方程y’+P(x)y=Q(x)的两个特解,因此y
1
(x)—y
2
(x)为对应的齐次方程y’+P(x)y=0的特解,C[y
1
(x)—y
2
(x)]为齐次方程的通解,故知所给非齐次方程的通解可以表示为y
1
(x)+C[y
1
(x)—y
2
(x)],因此选(B).
转载请注明原文地址:https://www.kaotiyun.com/show/QWy4777K
0
考研数学二
相关试题推荐
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是Aχ=0的基础解系.则A的列向量组的极大线性无关组可以是
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3—2x2x3.求二次型f的矩阵的所有特征值;
设A为3阶矩阵,将A的第2列加到第1列得矩阵B,再交换B的第2行与第3行得单位矩阵.记P1=,则A=
如图1-3-1,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]的图形分别是直径为2的下、上半圆周。设F(x)=∫0xf(t)dt,则下列结论正确的是()
设函数y=f(x)具有二阶导数,且f’(x)>0,f’’(x)>0,△x为自变量x在点x0,处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则()
求下列导数:(1)设y=,求.(2)设y=(1+χ2)tanχ,求.
设有齐次线性方程组Ax=0和Bx=0,其中A、B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
曲线的渐近线有()
设g(x)可微,=()
设是二阶常系数线性非齐次方程的解,求该微分方程的通解及该方程.
随机试题
对被测量进行了10次独立重复测量,得到以下测得值(单位略):0.31,0.32,0.30,0.35,0.38,0.31,0.32,0.34,0.37,0.36,请计算算术平均值和算术平均值的实验标准偏差。
强心苷中毒引起快速型心律失常,下述哪一项治疗措施是错误的
关于水泥基渗透结晶型防水涂料特点的说法,正确的有()。
基金销售人员的禁止性情形不包括()。
关于工作特征模型的说法,正确的是()。
按计税依据分类,税收分为()。[2008年真题]
教师的职业心理特征主要有()
在用来发射卫星的火箭头部涂一层特殊的物质,这种物质可以避免火箭因高速运动与空气作用产生高温而被毁坏的危险。这种材料能起这种作用的主要原因是()。
蕃茄酱:西红柿
曲线(e<x≤+∞)下方,x轴上方无界区域的面积为________.
最新回复
(
0
)