首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 在下列微分方程中以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是( ).
[2008年] 在下列微分方程中以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是( ).
admin
2019-05-10
72
问题
[2008年] 在下列微分方程中以y=C
1
e
x
+C
2
cos2x+C
3
sin2x(C
1
,C
2
,C
3
为任意常数)为通解的是( ).
选项
A、y"′+y"一4y′一4y=0
B、y"′+y"+4y′+4y=0
C、y"′一y"一4y′+4y=0
D、y"′一y"+4y′一4y=0
答案
D
解析
已知微分方程的通解,应根据通解的形式求出特征值,写出特征方程,最后写出待求的微分方程.
由其通解y=C
1
e
x
+C
2
cos2x+C
3
sin2x可知,其特征根为λ
1
=1,λ
2,3
=0±2i,故其特征方程为
(λ-1)(λ-2i)(λ+2i)=(λ-1)(λ
2
+4)=λ
3
-λ
2
+4λ-4=0,
故所求的微分方程为y"′一y"+4y′一4y=0.仅(D)入选.
转载请注明原文地址:https://www.kaotiyun.com/show/QNV4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).
设f′(lnχ)=1+χ,且f(0)=1,求f(χ).
设D={(χ,y)|0≤χ≤1,0≤y≤1},直线l:χ+y=t(t≥0),S(t)为正方形区域D位于l左下方的面积,求∫0χS(t)dt(χ≥0).
矩阵的非零特征值是a3=_______.
求函数z=χ2+2y2-χ2y2在D={(χ,y)|χ2+y2≤4,y≥0}上的最小值与最大值.
设二阶常系数齐次线性微分方程以y1=e2χ,y2=2e-χ-3e2χ为特解,求该微分方程.
设函数z=z(χ,y)由方程χ2+y2+z2=χyf(z2)所确定,其中厂是可微函数,计算并化成最简形式.
设f(χ)连续可导,f(0)=0,f′(0)≠0,F(χ)=∫0χ(χ2-t2)f(t)dt,且当χ→0时,F′(χ)与χk为同阶无穷小,求k.
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x-a的n阶无穷小,求证:f(x)的导函数f’(x)当→a时是x-a的a-1阶无穷小.
设f(x)在区间(一∞,+∞)内连续,且当x(1+x)≠0时,求f(0)与f(一1)的值;
随机试题
试述类风湿病的治疗原则。
破坏组织修复的最常见原因是
在医疗机构药品集中采购管理中,关于药品采购品种限制的说法,正确的是
骑跨伤多发生于
控制性详细规划和修建性详细规划,现状图所表达的内容有哪些不同?
在民族自治地方,单位的会计记录文字可以采取如下做法()。
19世纪晚期,在侵略非洲的过程中,几次入侵连遭失败,最后彻底战败的帝国主义国家是()。
在已建"职工"表中有姓名、性别、出生日期等字段,查询并显示所有年龄在50岁以上职工的姓名、性别和年龄,正确的SQL命令是
WhatkindsofTVprogrammesaremostpopularamongyoungpeopleinyourcountry?
Maslow’sHierarchyofNeedsAbrahamMaslowhasdevelopedafamoustheoryofhumanneeds,whichcanbearrangedinorderof【T
最新回复
(
0
)