首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3维向量组α1,α2线性无关,β1,β2线性无关. 若α1=[1,一2,3]T,α2=[2,1,1]T,β1=[2,1,4]T,β2=[一5,一3,5]T.求既可由α,α线性表出,也可由β1,β2线性表出的所有非零向量ξ.
设3维向量组α1,α2线性无关,β1,β2线性无关. 若α1=[1,一2,3]T,α2=[2,1,1]T,β1=[2,1,4]T,β2=[一5,一3,5]T.求既可由α,α线性表出,也可由β1,β2线性表出的所有非零向量ξ.
admin
2014-04-16
85
问题
设3维向量组α
1
,α
2
线性无关,β
1
,β
2
线性无关.
若α
1
=[1,一2,3]
T
,α
2
=[2,1,1]
T
,β
1
=[2,1,4]
T
,β
2
=[一5,一3,5]
T
.求既可由α,α线性表出,也可由β
1
,β
2
线性表出的所有非零向量ξ.
选项
答案
设ξ=k
1
α
1
+k
2
α
2
=λ
1
β
1
-λ
2
β
2
,则得齐次线性方程组k
1
α
1
+k
2
α
2
+λ
1
β
1
+λ
2
β
2
=0,将α
1
,α
2
,β
1
,β
2
成矩阵,初作初等行变换得[*]解得[k
1
,k
2
,λ
1
,λ
2
]=k[一1.2,一1,1].故既可由α
1
,α
2
线性表出,又可以由β
1
,β
2
线性表出的所有非零向量为ξ=k
1
α
1
+k
2
α
2
=一kα
1
+2kα
2
=[*]其中k是任意的非零常数.(或ξ=—λ
1
β
1
一λ
2
β
2
=kβ
1
-kβ
2
=[*]其k是是任意的非零常数)
解析
转载请注明原文地址:https://www.kaotiyun.com/show/QH34777K
0
考研数学二
相关试题推荐
(09年)当χ→0时,f(χ)=χ-sinaχ与g(χ)=χ2ln(1-bχ)是等价无穷小,则【】
[2006年]设非齐次线性微分方程y’+p(x)y=q(x)有两个不同的解y1(x),y2(x),c为任意常数,则该方程的通解是().
(1998年)设周期函数f(x)在(一∞,+∞)内可导,周期为4,又,则曲线y=f(x)在点(5,f(5))处的切线斜率为()
(2010年)设位于曲线(e≤x<+∞)下方,x轴上方的无界区域为G,则G绕x轴旋转一周所得空间区域的体积为______。
(01年)设矩阵A=且秩(A)=3,则k=_______.
计算二重积分|x2+y2-1|dσ,其中D={(x,y)|0≤x≤1,(0≤y≤1}。
当常数a取何值时,方程组无解、有无穷多个解?在有无穷多个解时,求出其通解。
已知函数y=f(x)在(一∞,+∞)上具有二阶连续的导数,且其一阶导函数f′(x)的图形如图3-1所示,则曲线y=f(x)的下凸(或上凹)区间为__________.
方程2y"-7y′+5y=0的通解为_________.
(Ⅰ)设A,B为n阶可相似对角化矩阵,且有相同特征值,证明:矩阵A,B相似。(Ⅱ)设,求可逆矩阵P,使得P-1AP=B。
随机试题
供方不能交货的专用产品,应向需方偿付违约金,专用产品的违约金为不能交货部分货款总值的1%~15%。
查找直流电源接地应注意什么?
______acertaindoubtamongthestudentsastothenecessityofthework.
正常成年人血液总量约占体重的()
控制尿液浓缩和稀释幅度的“逆流倍增”作用发生在
患者,男,50岁。咳喘20余年,现咳嗽痰少,口燥咽干,形体消瘦,腰膝酸软,颧红盗汗,舌红少苔,脉细数。其病机是
2007年7月15日,某亚麻厂正在生产的梳麻车间、前纺车间和准备车间的联合厂房突然发生亚麻粉尘爆炸起火。一瞬间,停电停水,477名职工大部分被围困在火海之中。经及时抢救,多数职工脱离了危险区。该厂的除尘系统采用布袋馀尘,金属管道输送亚麻粉尘。事故导
一般而言,学习积极性的核心内容是()
甲:政府在卡瑟纳省通过鼓励创造工作机会以降低失业率的计划已经失败了.因为在该计划实施1年以后失业率仍没有变化。乙:但是在计划开始前的3年中,卡瑟纳的失业率是上升的,因此该计划是有帮助的。下列选项中,假如正确,能够最强地反对乙对甲论述的反
(2021年广东)嘉兴南湖革命纪念馆的题诗“革命声传画舫中,诞生共党庆工农”纪念的历史事件是()。
最新回复
(
0
)