首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]三阶可导,且f(0)=f(1):0.设F(x)=x2f(x),求证:在(0,1)内存在c,使得F’"(c)=0.
设f(x)在[0,1]三阶可导,且f(0)=f(1):0.设F(x)=x2f(x),求证:在(0,1)内存在c,使得F’"(c)=0.
admin
2019-02-20
78
问题
设f(x)在[0,1]三阶可导,且f(0)=f(1):0.设F(x)=x
2
f(x),求证:在(0,1)内存在c,使得F’"(c)=0.
选项
答案
由于F(0)=F(1)=0,F(x)在[0,1]可导,故存在ξ
1
∈(0,1)使得F’(ξ
1
)=0.又 F’(x)=x
2
f’(x)+2xf(x), 于是由F’(0)=0,F’(ξ
1
)=0及F’(x)在[0,1]可导知,存在ξ
2
∈(0,ξ
1
)使得F"(ξ
2
)=0.又因 F"(x)=x
2
f"(x)+4xf’(x)+2f(x), 于是由F"(0)=F"(ξ
2
)=0及F"(x)在[0,1]可导知,存在c∈(0,ξ
2
)[*](0,1)使得F’"(c)=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/QFP4777K
0
考研数学三
相关试题推荐
设A为n阶实对称矩阵,其秩为r(A)=r.(1)证明:A的非零特征值的个数必为r(A)=r.(2)举一个三阶矩阵说明对非对称矩阵上述命题不正确.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中α1≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关.(2)求A的特征值、特征向量.
设A是三阶矩阵,相似于对角阵设B=(A—λ1E)(A—λ2E)(A一λ3E).则B=__________.
设A、B是n阶方阵,E+AB可逆.(1)验证E+BA也可逆,且(E+BA)—1=E—B(E+AB)—1A.(2)设P=xiyi=1,利用(1)证明P可逆,并求P—1.
设f(x)=,g(x)=∫0xf(t)dt,求:(1)y=g(x)的水平渐近线.(2)求该曲线y=g(x)与其所有水平渐近线,y轴所围平面图形的面积.
设随机变量X的绝对值不大于1,P{X=一1)=.在事件{一1<X<1}出现的条件下,X在(—1,1)内任一子区间上取值的条件概率与该子区间的长度成正比.试求:(1)X的分布函数F(x)=P{X≤x};(2)X取负值的概率p.
假设随机变量X的概率密度为fX(x)=而随机变量Y在区间(0,X)上服从均匀分布.试求:(1)随机变量X和Y的联合概率密度f(x,y);(2)随机变量Y的概率密度fY(y).
A,B是n阶矩阵,且r(A)+r(B)<n,证明A,B有公共的特征向量.
设f(x)、g(x)在[一a,a](a>0)上连续,g(x)为偶函数,且满足f(x)+f(一x)=A(A为常数).(1)试证:∫—aaf(x)g(x)dx=A∫0ag(x)dx;(2)计算:|sinx|arctanexdx.
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)单调减少;且f(1)=f’(1)=1,则
随机试题
试运行是指工程初验后正式验收、移交之间的设备运行。一般试运行期为()个月。
莫里哀嘲讽贵族沙龙文学咬文嚼字,故作风雅的恶习的作品是__________,他的现实主义精神最强的一部作品是__________。
下列关于上腔静脉的描述,错误的是()
某童,经常梦中惊醒,醒后恐惧、大汗。心理咨询人员经询问梦境,每次均为狗追咬恐惧所致。进一步询问其母,该童在3岁时曾被狗咬,这种咨询的指导思想属于( )
施工阶段的()是确保施工质量的关键。
根据合同法律制度的规定,下列各项中,属于合同成立的情形有()。
某高校金融实验班有三个小组,马、刘、孔三人分属不同的小组。学期期末金融理财课程考试成绩公布,结果如下:马和三人中第3小组的那位不一样,孔比三人中第l小组的那位成绩低,三人中第3小组的那位比刘分数高。若马、刘、孔三人按期末金融理财课程成绩由高到低排列,正确
如何实现学校管理目标?
社会主义思想道德与社会主义法律作为调节人们思想行为、协调人际关系、维护社会秩序的两种重要手段,虽然在调节领域、调节方式、调节目标等方面发挥的作用和方式存在很大不同,但二者是相辅相成、密不可分的。二者的相辅相成关系主要体现在
CustomsofficersataLondonairportyesterdayfound500,000poundsworthofdrugswhichwerebeingsmuggled(走私)intoBritainin
最新回复
(
0
)