首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中α1≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0. (1)证明:α1,α2,…,αn线性无关. (2)求A的特征值、特征向量.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中α1≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0. (1)证明:α1,α2,…,αn线性无关. (2)求A的特征值、特征向量.
admin
2017-07-26
63
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,其中α
1
≠0,若Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n—1
=α
n
,Aα
n
=0.
(1)证明:α
1
,α
2
,…,α
n
线性无关.
(2)求A的特征值、特征向量.
选项
答案
(1)设k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0, ① 据已知条件,有 Aα
1
=α
2
, A
2
α
1
=Aα
2
=α
3
,…, A
n—1
α
1
=A
n—2
α
2
=…—Aα
n—1
=α
n
, A
n
α
1
=A
n—1
α
2
=…=Aα
n
=0, 于是,用A
n—1
左乘①式,得 k
1
α
n
=0. 由于α
n
≠0,得k
1
=0. 再依次用A
n—2
,A
n—3
,…,左乘①式,可得到k
1
=k
2
=…=k
n
=0,所以α
1
,α
2
,…,α
n
线性无关. (2)将Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n
=0用矩阵表示为 A[α
1
,α
2
,…,α
n
]=[α
1
,α
2
,…,α
n—1
,0] =[α
1
,α
2
,…,α
n
][*] 从α
1
,α
2
,…,α
n
线性无关知,矩阵[α
1
,α
2
,…,α
n
]可逆,从而 [*] 得知A的特征值全为0,又因r(A)=r(B)n—1,所以齐次方程组Ax=0的基础解系仅由n一(n一1)—1个向量组成,所以A的全部特征向量为kα
n
,k≠0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/6rH4777K
0
考研数学三
相关试题推荐
设n阶矩阵A的各列元素之和为2且|A|=4,则它的伴随矩阵A的各列元素之和为_____.
设n阶矩阵A与B等价,则必有().
已知非齐次线性方程组x1+x2+x3+x4=-1;4x1+3x2+5x3-x4=-1;ax1+x2+3x3+bx4=-1;有3个线性无关的解.求a,b的值及方程组的通解.
已知A是3阶矩阵,A*是A的伴随矩阵,如果矩阵A的特征值是1,2,3,那么矩阵(A*)*的最大特征值是__________.
设中与A等价的矩阵有()个.
设A是m×n阶矩阵,下列命题正确的是().
随机试题
早期动脉粥样硬化病变,最早进入动脉内膜的细胞是
我国对外贸易货运保险可分为()。
甲公司2015年年初的递延所得税资产借方余额为50万元,与之对应的预计负债贷方余额为200万元;递延所得税负债无期初余额。甲公司2015年度实现的利润总额为9520万元,适用的企业所得税税率为25%且预计在未来期间保持不变;预计未来期间能够产生足够的应纳
2018年12月1日某物流公司接受甲公司委托由A城运送一批产品到B城,司机按照公司要求日夜兼程赶往B城,由于疲劳驾驶导致车祸,给行人李某造成人身伤害。李某向该物流公司提起诉讼,要求赔偿150万元。至2018年12月31日,法院尚未做出判决。物流公司预计该诉
思维奔逸是一种()障碍。
2004年10月,按照我国第一次全国经济普查的要求,湖北省某市某镇进行全镇经济普查,66岁的农民杨振龙当上了某村的普查员,他第一次上报的该村个体经营户营业收入是63万多元,全镇初步汇总个体经营户营业收入是8000多万元,与前几年上报的“约10亿元”差别太大
行政管理的基本依据是()。
阅读以下文字,完成以下问题。溴甲烷,又称溴代甲烷或甲基溴,是一种五色无味的液体。它具有强烈的熏蒸作用,能杀灭许多有害生物,是一种高效、广谱的杀虫剂。它对土壤具有很强的穿透能力,能穿透到未腐烂分解的有机体中,从而达到灭虫、防病、除草的目的。土壤熏蒸后
有些通讯网络维护涉及个人信息安全,因而,不是所有通信网络的维护都可以外包。以下哪项可以使上述论证成立?
设A是n阶矩阵,证明
最新回复
(
0
)