首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中α1≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0. (1)证明:α1,α2,…,αn线性无关. (2)求A的特征值、特征向量.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中α1≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0. (1)证明:α1,α2,…,αn线性无关. (2)求A的特征值、特征向量.
admin
2017-07-26
77
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,其中α
1
≠0,若Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n—1
=α
n
,Aα
n
=0.
(1)证明:α
1
,α
2
,…,α
n
线性无关.
(2)求A的特征值、特征向量.
选项
答案
(1)设k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0, ① 据已知条件,有 Aα
1
=α
2
, A
2
α
1
=Aα
2
=α
3
,…, A
n—1
α
1
=A
n—2
α
2
=…—Aα
n—1
=α
n
, A
n
α
1
=A
n—1
α
2
=…=Aα
n
=0, 于是,用A
n—1
左乘①式,得 k
1
α
n
=0. 由于α
n
≠0,得k
1
=0. 再依次用A
n—2
,A
n—3
,…,左乘①式,可得到k
1
=k
2
=…=k
n
=0,所以α
1
,α
2
,…,α
n
线性无关. (2)将Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n
=0用矩阵表示为 A[α
1
,α
2
,…,α
n
]=[α
1
,α
2
,…,α
n—1
,0] =[α
1
,α
2
,…,α
n
][*] 从α
1
,α
2
,…,α
n
线性无关知,矩阵[α
1
,α
2
,…,α
n
]可逆,从而 [*] 得知A的特征值全为0,又因r(A)=r(B)n—1,所以齐次方程组Ax=0的基础解系仅由n一(n一1)—1个向量组成,所以A的全部特征向量为kα
n
,k≠0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/6rH4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,且A的行列式|A|=0,则A________.
设n阶矩阵A与B等价,则必有().
已知实二次型f(x1,x2,x3)=a(x11+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
已知非齐次线性方程组x1+x2+x3+x4=-1;4x1+3x2+5x3-x4=-1;ax1+x2+3x3+bx4=-1;有3个线性无关的解.求a,b的值及方程组的通解.
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠0使得AB=0,则
已知线性方程组(Ⅰ)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系:(Ⅲ)方程组有解时,求出方程组的全部解.
设A是n阶反对称矩阵,证明:如果λ是A的特征值,那么一λ也必是A的特征值.
设A是m×n矩阵,则下列4个命题①若r(A)=m,则非齐次线性方程组Ax=b必有解;②若r(A)=m,则齐次方程组Ax=0只有零解;③若r(A)=n,则非齐次线性方程组Ax=b有唯一解;④若r(A)=n,则齐次方程组Ax=0只有零解中正确的是
随机试题
甲公司为一家制衣公司,2021年计划销售增长率为25%,该增长率超出公司正常的增长水平较多,为了预测融资需求,安排超常增长所需资金,财务经理请你协助安排有关的财务分析工作,该项分析需要依据管理用财务报表进行,相关资料如下:资料一:30
某二叉树共有7个结点,其中叶子结点只有1个,则该二叉树的深度为(假设根结点在第1层)()。
某钢筋混凝土结构的截面最小尺寸为300mm,钢筋直径为30mm,钢筋的中心间距为70mm,则该混凝土中集料最大公称粒径是()。
下列哪一项货物或物品不适用暂时进出境通关制度()。
下列关于个人教育贷款的说法,不正确的是()
在竞争环境下,如果通信企业要通过运用交叉补贴手段排挤竞争对手、获得竞争优势,其前提条件必须是该通信企业()。[2006年真题]
杜某在路上行走时,未在人行道内行走,违反了交通规则,但因其双目失明,根据《治安管理处罚法》的规定,可以不予处罚。()
Unlesswespendmoneytospotandpreventasteroids(小行星)now,onemightcrashintoEarthanddestroylifeasweknowit,sayso
Doctorsalreadyknowthatpeoplewhosmokecandamagetheirhearing.ThelateststudyinthejournalTobaccoControl,【C1】______m
Oneinsix.Believeitornot,that’sthenumberofAmericanswhostrugglewithhunger.Tomaketomorrowalittlebetter,Feedi
最新回复
(
0
)