首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知连续函数f(x)满足∫0xf(t)dt+∫0xtf(x-t)dt=ax2. 求f(x);
已知连续函数f(x)满足∫0xf(t)dt+∫0xtf(x-t)dt=ax2. 求f(x);
admin
2022-09-22
101
问题
已知连续函数f(x)满足∫
0
x
f(t)dt+∫
0
x
tf(x-t)dt=ax
2
.
求f(x);
选项
答案
令u=x-t,则t=x-u,dt=-du.因此 ∫
0
x
tf(x-t)dt=∫
0
x
(x-u)f(u)du=x∫
0
x
f(u)du-∫
0
x
uf(u)du, 从而∫
0
x
f(t)dt+∫
0
x
tf(x-t)dt=ax
2
可转化为 ∫
0
x
f(t)dt+x∫
0
x
f(u)du-∫
0
x
uf(u)du=ax
2
. 将上式两边关于x求导,得 f(x)+∫
0
x
f(u)du+xf(x)-xf(x)=2ax, 即 f(x)+∫
0
x
f(u)du=2ax. 将上式两边关于x求导,得 f’(x)+f(x)=2a. 由通解公式,可求得上述一阶非齐次线性微分方程的通解为 f(x)=e
-∫1dx
(∫2ae
∫1dx
dx+C)=e
-x
(C+2a∫e
x
dx) =e
-x
(2ae
x
+C). 又f(0)=0,则可得C=-2a.因此 f(x)=2a(1-e
-x
).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Pxf4777K
0
考研数学二
相关试题推荐
设y=y(x)由yexy+xcosx-1=0确定,求dy|x=0=______.
设函数则y(n)(0)=______。
设A=(α1,α2,α3)为三阶矩阵,且|A|=3,则|α1+2α2,α2-3α3,α3+2α1|=_______.
求函数z=χy(4-χ-y)在χ=1,y=0,χ+y=6所围闭区域D上的最大值_______与最小值_______.
设f(x)在[a,b]上有二阶导数,且f’’(x)≤0.证明
已知a,b,c不全为零,证明方程组只有零解.
设则在区间(-1,1)内()
设α1,α2,α3,α4,α5为4维列向量,下列说法中正确的是()
设f(t)=arctan(1+x2+y2)dxdy,则为().
[2014年]设f(x)=,x∈[0,1].定义函数列:f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x)),…记Sn是曲线y=fn(x),直线x=1及x轴所围平面图形的面积,求极限nSn.
随机试题
爱国主义是社会主义核心价值体系的灵魂。()
《中国教育改革和发展纲要》颁布于()
A.急性绞窄性肠梗阻B.长期胃肠减压C.中暑D.婴儿手足抽搐E.长期肠造瘘可引发低钾血症的病症是
男,42岁,3天前体力劳动时突发心前区疼痛,2天来出现心悸气急,双下肢水肿,查体血压150/65mmHg,胸骨左缘3~4肋间可闻及Ⅳ级粗糙连续性杂音,可触及震颤,股动脉枪击音,最可能的诊断是
关于肝豆状核变性说法正确的是
可摘义齿不稳定的表现不包括
单纯母乳喂养儿肠道内占绝对优势的细菌是()。
买受人在合理期间内未通知或者自标的物收到之日起( )内未通知出卖人的,视为标的物的数量或质量符合约定,有质量保证期的标的物适用质量保证期。
在Windows中,要把图标设置成缩略图方式,应在下面()菜单中设置。
A、 B、 C、 B
最新回复
(
0
)