首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设直线L:及π:x-y+2z-1=0. 求直线L在平面π上的投影直线L0;
设直线L:及π:x-y+2z-1=0. 求直线L在平面π上的投影直线L0;
admin
2018-05-21
54
问题
设直线L:
及π:x-y+2z-1=0.
求直线L在平面π上的投影直线L
0
;
选项
答案
方法一令[*]=t,即x=1+t,y=t,z=1-t,将x=1+t,y=t,z=1-t代入平面x-y+2z-1=0,解得t=1,从而直线L与平面π的交点为M
1
(2,1,0). 过直线L且垂直于平面π的平面法向量为s
1
={1,1,-1}×{1,-1,2}={1,-3,-2},平面方程为 π
1
:1×(x-2)-3×(y-1)-2×z=0,即π
1
:x-3y-2z+1=0 从而直线L在平面π上的投影直线一般式方程为 [*] 方法二直线L转化成一般式方程为 [*] 过直线L的平面束为(x-y-1)+λ(y+z-1)=0,即x+(λ-1)y+λz-(λ+1)=0,当{1,λ-1,λ}上{1,-1,2},即λ=-2时,过直线L的平面与平面π垂直,把λ=-2代入平面束方程,则与π垂直的平面方程为π
1
:x-3y-2z+1=0,直线L在平面π上的投影直线为 [*] 方法三设过直线L且与平面π垂直的平面方程为π
1
:A(x-1)+By+C(z-1)=0,则有{A,B,C}⊥{1,-1,2},{A,B,C}⊥{1,1,-1},即 [*] 解得A=-C/2,B=3C/2,平面π
1
:-C/2(x-1)+[*]y+C(z-1)=0,即 π
1
:x-3-2z+1=0 从而L在平面π的投影直线为 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Ppr4777K
0
考研数学一
相关试题推荐
设随机变量X在区间(0,1)上服从均匀分布,当X取到x(0<x<1)时,随机变量Y等可能地在(x,1)上取值。试求:(Ⅰ)(X,Y)的联合概率密度;(Ⅱ)关于Y的边缘概率密度函数;(Ⅲ)P{X+Y>1}。
设f(x1,x2,x3)=x2Ax=x12+ax22+x32+4x1x2+4x1x3+2bx2x3,ξ=(1,1,1)T是A的特征向量,求正交变换化二次型为标准形,并求当x满足x2x=x12+x22+x32=1时,f(x1,x2,x3)的最大值。
设f(x)在x=a具有三阶导数且f’’’(a)≠0,又设f(x)在x=a处的拉格朗日余项一阶泰勒展开式为
若级数发散,则()
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得∫0af(x)dx=af(0)+f’(ξ).
证明函数恒等式arctanx=,x∈(一1,1).
设随机变量X,Y相互独立,且X服从二项分布,y服从参数为1的指数分布,则概率P{X+Y≥1)等于()
设随机变量X与Y相互独立,且都在(0,α)上服从均匀分布,则随机变量Z=max{X,Y)的概率密度为()
设事件A、B、C两两独立,且ABC=φ,P(A)=P(B)=P(C)=p,问p可能取的最大值是多少?
设y(x)是方程y(4)-y’’=0的解,且当x→0时,y(x)是x的3阶无穷小,求y(x).
随机试题
患者,男性,56岁。因高血压行输液治疗,输液过程中体温升高达38.6℃,伴有寒战,首先考虑
安全管理的10个特征是:()。
我国城市道路分为()。
银行向个人发放的、用于解决市民及其配偶或直系亲属伤病就医时的资金短缺问题的贷款是()。
房地产市场状况分析不包括()分析。
分层教学是因材施教原则的具体应用。()
公安机关作出吊销许可证及处()以上罚款的治安管理处罚决定前,应当告知违反治安管理行为人有权要求举行听证。
a与b的算术平均值为8.
Clearlyifwearetoparticipateinthesocietyinwhichwelivemustcommunicatewithotherpeople.Agreatdealofcommunicati
Whydidshechoosepsychology?
最新回复
(
0
)