首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵 其中矩阵A可逆,则B-1=( )
设矩阵 其中矩阵A可逆,则B-1=( )
admin
2021-02-25
59
问题
设矩阵
其中矩阵A可逆,则B
-1
=( )
选项
A、A
-1
P
1
P
2
B、P
1
A
-1
P
2
C、P
1
P
2
A
-1
D、P
2
A
-1
P
1
答案
C
解析
本题考查矩阵的初等变换与初等矩阵的关系.所涉及的知识点是
(1)对A矩阵施一次初等列变换,相当于用同类的初等方阵右乘矩阵A.
(2)初等矩阵都是可逆的矩阵,其逆仍是同种的初等矩阵.
(3)可逆矩阵的性质,可逆矩阵积的逆等于逆的积,要调换因子的顺序.
由题设,矩阵是通过交换矩阵的第2、3两列和交换第1、4两列后得到的,即
B=AP
1
P
2
或B=AP
2
P
1
,
于是B
-1
=P
-1
1
P
-1
2
A
-1
,又P
-1
1
=P
1
,P
-1
2
=P
2
,故B
-1
=P
1
P
2
A
-1
或B
-1
=P
2
P
1
A
-1
.因此应选C.
转载请注明原文地址:https://www.kaotiyun.com/show/PZ84777K
0
考研数学二
相关试题推荐
一个瓷质容器,内壁和外壁的形状分别为抛物线y=。把它铅直地浮在水中,再注入比重为3的溶液。问欲保持容器不沉没,注入液体的最大深度是多少?(长度单位为厘米)
设y″的系数为1的某二阶常系数非齐次线性微分方程的两个特解为y1*=(1-x+x2)ex与y1*=x2ex则该微分方程为______.
设f(x)在[a,b]上有二阶导数,且f’(x)>0.(Ⅰ)证明至少存在一点ξ∈(a,b),使∫abf(x)dx=f(b)(ξ一a)+f(a)(b—ξ);(Ⅱ)对(Ⅰ)中的ξ∈(a,6),求.
设3维向量组α1,α2线性无关,β1,β2线性无关.(Ⅰ)证明:存在非零3维向量ξ,ξ既可由α1,α2线性表出,也可由β1,β2线性表出;(Ⅱ)若α1=(1,-2,3)T,α2=(2,1,1)T,β1=(-2,1,4)T,β2=(-5,-3,5)T.求
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为().
(2003年试题,十二)已知平面上三条不同直线的方程分别为l1:ax+2b+3c=0l2:bx+2cy+3a=0l3:cx+2xy+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3一2x2x3.(Ⅰ)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值.
设A=,正交矩阵Q使得QTAQ为对角矩阵,若Q的第一列为(1,2,1)T,求a,Q。
设三阶方阵A,B满足A-1BA=6A+BA,且A=,则B=________。
设A,B为3阶方阵,且|A|=1,|B|=2,|A-1+B|=2,则|A+B-1|=__________.
随机试题
职业危害形势包括()。
依据施工合同示范文本通用条款规定,进行竣工检查试验后,竣工检验的工作程序和双方责任还包括( )。
高背压泡沫产生器是从贮罐内底部液下喷射空气泡沫扑救油罐火灾的主要设备,其发泡倍数()
如果一个学生智力发展一般,那么他智商的取值范围应该是()。
五台山:山西
我国在法治上的要求是______。
下列关于B/S模式应用服务器的描述中,错误的是()。
Decision-makingisacomplexbusinesssubjectwhichcombinesthemostcomplicatedelementsoftheoperationaland(36)______asp
TheLostArtofListening"Whywon’theevenlistentomyidea?""WhyamIcutoffbeforeIprovidethewholestory?"Howma
A、Helikeslivingalone.B、Hishouseisfarfromhisparents’house.C、Heisbusywithhisbusiness.D、Healwaysquarrelswithh
最新回复
(
0
)