首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使得P—1AP=Λ。
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使得P—1AP=Λ。
admin
2017-12-29
34
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
。
(Ⅰ)求矩阵A的特征值;
(Ⅱ)求可逆矩阵P使得P
—1
AP=Λ。
选项
答案
(Ⅰ)由已知可得 A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*] 记P
1
=(α
1
,α
2
,α
3
), [*] 则有AP
1
=P
1
B。 由于α
1
,α
2
,α
3
线性无关,即矩阵P
1
可逆,所以P
1
—1
AP
1
=B,因此矩阵A与B相似,则 [*]=(λ一1)
2
(λ一4), 矩阵B的特征值是1,1,4,故矩阵A的特征值为1,1,4。 (Ⅱ)由(E—B)x=0,得矩阵B对应于特征值λ=1的特征向量β
1
=(一1,1,0)
T
,β
2
=(一2,0,1)
T
;由(4E—B)x=0,得对应于特征值λ=4的特征向量β
3
=(0,1,1)
T
。 令P
2
=(β
1
,β
2
,β
3
)=[*] P
2
—1
P
1
—1
AP
1
P
2
=[*] 即当P=P
1
P
2
=(α
1
,α
2
,α
3
)[*]=(一α
1
+α
2
,一2α
1
+α
2
+α
3
)时,有 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/PUX4777K
0
考研数学三
相关试题推荐
设A是n阶方阵,2,4,…,2n是A的n个特征值,E是n阶单位阵.计算行列式|A一3E|的值.
设P(A)>0,P(B)>0.证明:A,B互不相容与A,B相互独立不能同时成立.
A是n阶方阵,则A相似于对角阵的充分必要条件是()
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
已知y—y(x)是微分方程(x2+y2)dy一dy的任意解,并在y=y(x)的定义域内取x0,记y0一y(x0)。证明:均存在.
若DX=0.004,利用切比雪夫不等式估计概率P{|X—EX|<0.2}.
已知函数F(x)的导数为=0,则F(x)=________.
求级数的和函数.
已知的一个特征向量。问A能否相似于对角矩阵?说明理由。
设y=ex是微分方程xy’+p(x)y=x的一个解,求此微分方程满足条件y|x=ln2=0的特解.
随机试题
肛裂的主要临床表现是
下列关于《产品质量法》的叙述中正确的是:
逐期提高可转换债券转换比率的目的是促使债券持有人尽早将债券转换为股票。()
下列属于楷书的特点是()
与学习的社会意义和个人的前途相联的学习动机是()。
士为知己者死,女为悦己者容。对于具有英雄主义_________的伪英雄而言,这句誓言被他们奉为纲领性的行动指南。因为把他人的重要性置于自己的重要性之上,这句誓言及对其的追随行为展示的是一种奴化了的畸形心态。同时,不经意间,也用一种对称的手法把男女两性的不对
假设有student表,可以正确添加字段“平均分数”的命令是
Thepressmockedhisattemptstoappealtoyoungvoters.
A、Shehastochangethetimeforthetrip.B、Shehasn’tdecidedwheretogonextmonth.C、Shecan’taffordthetimeforthetrip
Theindustrialsocietieshavebeenextremelyproductiveduringthelasttwocenturies.The【S1】______advancehasbeenremarkabl
最新回复
(
0
)