首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=x12+x22+x33+2ax1x2+2x1x3+2bx2x3的秩为1,且(0,1,一1)T是二次型矩阵的特征向量, 求正交变换x=Qy,把二次型化为标准形f(x1,x2,x3);
设二次型f(x1,x2,x3)=x12+x22+x33+2ax1x2+2x1x3+2bx2x3的秩为1,且(0,1,一1)T是二次型矩阵的特征向量, 求正交变换x=Qy,把二次型化为标准形f(x1,x2,x3);
admin
2017-02-13
89
问题
设二次型f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+x
3
3
+2ax
1
x
2
+2x
1
x
3
+2bx
2
x
3
的秩为1,且(0,1,一1)
T
是二次型矩阵的特征向量,
求正交变换x=Qy,把二次型化为标准形f(x
1
,x
2
,x
3
);
选项
答案
A=[*],特征值为0,0,3。解线性方程组Ax=0得α
1
=[*],α
2
=[*],正交化得 β
1
=α
1
=[*], β
1
=α
1
-[*], 单位化得ξ
1
=[*], 解线性方程组(A-3E)x=0得α
3
=[*],单位化得ξ
3
=[*]。 Q=[*]。 令x=Qy可将二次型化为f=3y
3
2
。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/PUH4777K
0
考研数学三
相关试题推荐
设函数y=y(x)往(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程d2x/dy2+(y+sinx)(dx/dy)3=0变换为y=y(x)满足的微分方程;
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:|x-a|
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求a的值;
根据二重积分的几何意义,确定下列积分的值:
设总体X服从(0,θ](θ>0)上的均匀分布,X1,X2,…,Xn是来自总体X的样本,求θ的最大似然估计量与矩估计算.
设f(x,y)连续,,其中D1=[-a,a]×[-b,b],D2=[0,a]×[0,b],a,b是两正常数,试用二重积分的几何意义说明:若f(x,y)=f(-x,y)=f(x,-y)=f(-x,-y),则I1=4I2.
已知f(x)是微分方程xf’(x)-f(x)=满足f(1)=0的特解,则∫01f(x)dx=_________.
设函数f(x,y)在点(0,0)的某邻域内连续,并且则()
设则()
随机试题
离合器操纵机构零部件装在离合器壳外部的有()。
患者,女,68岁,缺失已达12年,今求可摘局部义齿修复按Kennedy分类,下颌缺牙属第几类
可靠度是()的函数,常用()表示。
货币的本质是()。
下列有关克隆技术的陈述,不正确的是()。
下列属于完善初次分配机制的举措有()。
若有n把看上去样子相同的钥匙,其中只有一把能打开门上的锁,用它们去试开门上的锁,设取到每只钥匙是等可能的,试就下面两种情况求试开门次数X的均值及方差.每把钥匙试开一次后除去;
下面程序:PrivateSubForm_Click()Dimx,y,zAsIntegerx=5y=7z=0CallPl(x,y,z)PrintStr(z)En
sugarsorstarches
TheLarsenBiceshelfcoveredmorethan3,000squarekilometersandwas(36)metersthickuntilitsnorthernpart(37)inthe1
最新回复
(
0
)