首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论p,t为何值时,方程组无解?有解?有解时写出全部解.
讨论p,t为何值时,方程组无解?有解?有解时写出全部解.
admin
2018-11-23
82
问题
讨论p,t为何值时,方程组
无解?有解?有解时写出全部解.
选项
答案
①用初等行变换把增广矩阵化为阶梯形矩阵 [*] 于是,当t≠-2时,有r(A|β)>r(A),此时方程组无解. 当t=-2时(p任意),r(A|β)=r(A)≤3<4,此时有无穷多解. ②当t=-2,p=-8时, [*] 得同解方程组 [*] 令χ
3
=χ
4
=0,得一特解(-1,1,0,0)
T
. 导出组有同解方程组 [*] 对χ
3
,χ
4
赋值得基础解系(4,-2,1,0)
T
,(-1,-2,0,1)
T
.此时全部解为(-1,1,0,0)
T
+c
1
(4,-2,1,0)
T
+c
2
(-1,-2,0,1)
T
,其中c
1
,c
2
可取任何数. ③当t=-2,p≠-8时, [*] 得同解方程组 [*] 令χ
4
=0,得一特解(-1,1,0,,0)
T
. 导出组有同解方程组 [*] 令χ
4
=1,得基础解系(-1,-2,0,1)
T
.此时全部解为(-1,1,0,0)
T
+c(-1,-2,0,1)
T
,其中c可取任何数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/P9M4777K
0
考研数学一
相关试题推荐
[*]
设某产品的需求函数为Q=Q(p),其对价格P的弹性εP=2,则当需求量为10000件时,价格增加1元会使产品收益增加______元.
设随机变量X服从正态分布N(μ,σ2),已知P{X≤2}=0.062,P{X≥9}=0.025,则概率P{|X|≤4}=_______。(Ф(1.54)=0.938,Ф(1.96)=0.975)
行列式的第4行元素的余子式之和的值为_________.
求分别满足下列关系式的f(x).(1)f(x)=∫0xf(t)dt,其中f(x)为连续函数;(2)f’(x)+xf’(一x)=x.
证明:n维列向量组α1,α2,…,αn线性无关的充分必要条件是行列式
设有向量α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b—2,a+2b)T,β=(1,3,一3)T.试讨论当a、b为何值时,(1)β不能由α1,α2,α3线性表示;(2)β可由α1,α2,α3惟一地线性表示,并求出表示式;(
设做一次实验的费用为1000元,如果实验失败,则要另外再花300元对设备调整才能进行下一次的实验.设各次实验相互独立,成功的概率均为0.2,并假定实验一定要进行到出现成功为止.求整个实验程序的平均费用.
一个罐子里装有黑球和白球.黑、白球数之比为R:1,现有放回地一个接一个地抽球,直到抽到黑球为止,记X为所抽的白球数.这样做了n次以后,我们获得一组样本:X1,X2,…,Xn.基于此,求R的最大似然估计.
(05年)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(I)存在ξ∈(0,1),使得f(ξ)=1一ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
随机试题
乙型肝炎传播途径是梅毒传播途径是
下列药物中长于治疗咽喉肿痛的是
具有特别强的热原活性的是
乳腺癌术后病人几年内应避免妊娠?()
当涉及主体和承重结构改动或增加荷载时,必须由()核查有关原始资料,对既有建筑结构的安全性进行核验,确认。
品牌竞争的基础有()。
通过招投标,甲、乙两家建筑公司分段承包了某行政部门监管的X公司投资的一高速公路建设工程项目中的两段,最终实际投资金额分别为460万元和540万元,合计为1000万元。工程施工前有关方对该建筑工程项目向某保险公司统一投保了一份建筑工程保险,保险合同中约定两段
图中演员甲和演员乙在动画中的运动方向均为从左到右,则下列说法正确的是()。
【国际联盟】四川师范大学2013年历史学基础真题;云南大学2014年世界史基础真题;首都师范大学2016年历史学基础综合真题
“一国两制”的提出是为了解决()的问题。
最新回复
(
0
)