首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上二阶可导,gˊˊ(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明: (1)在(a,b)内,g(x)≠0; (2)(a,b)内至少存在一点ξ,使.
设f(x),g(x)在[a,b]上二阶可导,gˊˊ(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明: (1)在(a,b)内,g(x)≠0; (2)(a,b)内至少存在一点ξ,使.
admin
2016-09-13
47
问题
设f(x),g(x)在[a,b]上二阶可导,gˊˊ(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明:
(1)在(a,b)内,g(x)≠0;
(2)(a,b)内至少存在一点ξ,使
.
选项
答案
(1)设c∈(a,b),g(c)=0. 由g(a)=g(c)=g(b)=0,g(x)在[a,c],[c,b]上两次运用罗尔定理可得gˊ(ξ
1
)=gˊ(ξ
2
)=0,其中ξ
1
∈(a,c),ξ
2
∈(c,b),对gˊ(x)在[ξ
1
,ξ
2
]上运用罗尔定理,可得gˊˊ(ξ
3
)=0. 因已知gˊˊ(x)≠0,故g(c)≠0. (2)F(x)=f(x)gˊ(x)-fˊ(x)g(x)在[a,b]上运用罗尔定理, F(a)=0,F(b)=0, 故[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ODT4777K
0
考研数学三
相关试题推荐
2edx+(e+2)dy
掷一枚骰子,观察其出现的点数,A表示“出现奇数点”,B表示“出现的点数小于5”,C表示“出现的点数是小于5的偶数”,用集合列举法表示下列事件:Ω,A,B,C,A+B,A-B,B-A,AB,AC,+B.
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
验证函数u=e-kn2tsinnx满足热传导方程ut=kuxx.
本题考察有趣的雪花曲线.雪花曲线是这样作出来的:以边长为1的等边三角形作为基础,第一步:将每边三等分,以每边的中间一段为底各向外作一个小的等边三角形,随后把这三个小等边三角形的底边删除.第二步:在第一步得出的多边形的每条边上重复第一步,如此无限地继续下去,
求函数z=x4+y4-x2-2xy-y2的极值.
求一曲线的方程,这曲线过原点,并且它在点(x,y)处的切线斜率等于2x+y。
(1)如果点P(x,y)以不同的方式趋于Po(xo,yo)时,f(x,y)趋于不同的常数,则函数f(x,y)在po(xo,yo)处的二重极限____________.(2)函数f(x,y)在点(xo,yo)连续是函数在该点处可微分的___________
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=-1.讨论f’(x)在(-∞,+∞)上的连续性.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
随机试题
下列关于Word2010文件的保存说法中,错误的是()。
经济性贬值
随着卵裂次数的增加,________内的卵裂球体积渐变________,但分化差异渐________。
一定量的某种理想气体,当温度不变时,其压强随体积的增大而();当体积不变时,其压强随温度的升高而()。
依据《环境影响评价公众参与暂行办法》的规定,建设单位应当在报送环境保护行政主管部门审批或者重新审核前,向公众公告的内容包括( )。
甲公司为增值税一般纳税人,适用的增值税税率为17%,商品售价中均不含增值税。销售商品和提供劳务均符合收入确认条件,其成本在确认收入时逐笔结转。2014年12月,甲公司发生如下交易或事项:(1)1日,与乙公司签订为期3个月的劳务合同,合同总价款为300万元
休哈特提出控制图的理论基本思想是()。
Believeitornot,therearegoodreasonsforwearingaschooluniform.Itmakesyou【C1】______proudofyourschool.Itbuildsa
下列情形中,属于犯罪未遂的有:()。
Attemptstounderstandtherelationshipbetweensocialbehaviorandhealthhavetheirorigininhistory.Dubos(1969)suggested
最新回复
(
0
)