首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组 (Ⅰ):α1,α2,…,αn; (Ⅱ):β1,β2,…,βm; (Ⅲ):γ1,γ2,…,γm,若向量组(Ⅲ)线性相关,则( ).
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组 (Ⅰ):α1,α2,…,αn; (Ⅱ):β1,β2,…,βm; (Ⅲ):γ1,γ2,…,γm,若向量组(Ⅲ)线性相关,则( ).
admin
2018-05-17
71
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
),B=(β
1
,β
2
,…,β
n
),AB=(γ
1
,γ
2
,…,γ
n
),记向量组
(Ⅰ):α
1
,α
2
,…,α
n
;
(Ⅱ):β
1
,β
2
,…,β
m
;
(Ⅲ):γ
1
,γ
2
,…,γ
m
,若向量组(Ⅲ)线性相关,则( ).
选项
A、(Ⅰ),(Ⅱ)都线性相关
B、(Ⅰ)线性相关
C、(Ⅱ)线性相关
D、(Ⅰ),(Ⅱ)至少有一个线性相关
答案
D
解析
若α
1
,α
2
,…,α
n
线性无关,β
1
,β
2
,…,β
n
线性无关,则r(A)=n,r(B)=n,
于是r(AB)=n.因为γ
1
,γ
2
,…,γ
m
线性相关,所以r(AB)=r(γ
1
,γ
2
,…,γ
n
)
故α
1
,α
2
,…,α
n
与β
1
,β
2
,…,β
n
至少有一个线性相关,选(D)
转载请注明原文地址:https://www.kaotiyun.com/show/Nck4777K
0
考研数学二
相关试题推荐
(2007年试题,一(10))设矩阵则A与B().
(2012试题,三)(1)证明方程xn+xn-1+…+x=1(n为大于1的整数),在区间内有且仅有一个实根;(2)记(1)中的实根为xn,证明存在,并求此极限.
(1999年试题,一)函数在区间上的平均值为__________.
(2002年试题,十一)已知A,B为三阶矩阵,且满足2A-1B=B-4E,其中E是三阶单位矩阵.(1)证明:矩阵A-2E可逆;(2)若求矩阵A.
(2011年试题,一)设A为三阶矩阵,将A的第2列加到第1列得矩阵B.再交换曰的第2行与第3行得单位矩阵,记则A=().
(2010年试题,14)设A,B为三阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=__________.
(2007年试题,一)设函数f(x)在(0,+∞)上具有二二阶导数,且fn(x)>0-令un=f(n)=1,2,…,n,则下列结论正确的是().
已知非齐次线性方程组有3个线性无关的解.(1)证明方程组的系数矩阵A的秩r(A)=2;(2)求a,b的值及方程组的通解.
证明:(-1<x<1)
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)严格单调减少,且f(1)=f’(1)=1,则
随机试题
A.白芷B.巴戟天C.山药D.天花粉E.浙贝母图15所示药材是()。
Theincreasingpopularityofelectricvehiclesandplug-inhybridelectricvehiclesisattributedtothesavingsinfuelcostsc
与雄激素关系密切的肿瘤是
合同中规定履行地点的作用有()。
根据《房屋建筑与装饰工程工程量计算规范》(GB50854—2013),以下关于现浇混凝土工程量计算正确的有()。
证券组合管理的意义在于采用适当的方法选择多种证券作为投资对象,以达到投资收益最大化的目标。()
[资料三]甲公司2011年至2013年有关业务如下:(1)甲公司与乙公司签订了一份400万元的劳务合同,甲公司为乙公司开发一套系统软件(以下简称项目)2011年3月2日项目开发工作开始,预计2013年2月26日完工。预计开发完成该项目的
企业对于发出的商品,不符合收入确认条件的,应按其实际成本编制会计分录:借记“发出商品”科目,贷记“库存商品”科目。()
单位应当对已到保管期限的会计档案进行鉴定,并形成会计档案鉴定意见书。对于保管期已满的会计档案应当按照法定程序全部销毁。()
下列少数民族是由古代“百越”的一支发展形成的有()。
最新回复
(
0
)