首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1是矩阵A属于特征值λ=1的特征向量,α2与α3是矩阵A属于特征值λ=5的特征向量,那么矩阵P不能是( )
已知α1是矩阵A属于特征值λ=1的特征向量,α2与α3是矩阵A属于特征值λ=5的特征向量,那么矩阵P不能是( )
admin
2020-03-01
77
问题
已知
α
1
是矩阵A属于特征值λ=1的特征向量,α
2
与α
3
是矩阵A属于特征值λ=5的特征向量,那么矩阵P不能是( )
选项
A、(α
1
,一α
2
,α
3
).
B、(α
1
,α
2
+α
3
,α
2
一2α
3
).
C、(α
1
,α
3
,α
2
).
D、(α
1
+α
2
,α
1
—α
2
,α
3
).
答案
D
解析
若
P=(α
1
,α
2
,α
3
),则有AP=PA.即(Aα
1
,Aα
2
,Aα
3
)=(α
1
α
1
,α
2
α
2
,α
3
α
3
).可见α
i
是矩阵A属于特征值α
i
(i=1,2,3)的特征向量,又因矩阵P可逆,因此α
1
,α
2
,α
3
线性无关.若α是属于特征值λ的特征向量,则一α仍是属于特征值λ的特征向量,故选项A正确.若α,β是属于特征值λ的特征向量,则2α+3β,…仍是属于特征值A的特征向量.本题中,α
2
,吧是属于λ=5的线性无关的特征向量,故α
2
+α
3
,α
2
一2α
3
仍是λ=5的特征向量,并且α
2
+α
3
,α
2
一2α
3
线性无关,故选项B正确.对于选项C,因为α
2
,α
3
均是λ=5的特征向量,所以α
2
与α
3
谁在前谁在后均正确.故选项C正确.由于α
1
,α
2
是不同特征值的特征向量,因此α
1
+α
2
,α
1
一α
2
不再是矩阵A的特征向量,故选项D错误.所以应选D.
转载请注明原文地址:https://www.kaotiyun.com/show/NVA4777K
0
考研数学二
相关试题推荐
设A是m×n矩阵,则下列命题正确的是
设A为n阶方阵,齐次线性方程组Ax=0有两个线性无关的解向量,A*是A的伴随矩阵,则()
设A=E一2ξξT,其中ξ=(x1,x2,…,xn)T,且有ξTξ=1。则①A是对称矩阵;②A2是单位矩阵;③A是正交矩阵;④A是可逆矩阵。上述结论中,正确的个数是()
设向量组(I)α1,α2,…,αr可由向量组(Ⅱ)β1,β2,…,βs线性表示,则()
二元函数f(x,y)在点(0,0)处可微的一个充分条件是()
若方程组有解,则常数a1,a2,a3,a4应满足的条件是_______.
设二次型f(χ1,χ2,χ3)=χ12+χ22+χ32+2aχ1χ2+2βχ2χ3+2χ1χ3经正交变换化成了标准形f=y22+2y32,其中p为正交矩阵,则α=_______,β=_______.
设(x)=(Ⅰ)若f(x)处处连续,求a,b的值;(Ⅱ)若a,b不是(Ⅰ)中求出的值时f(x)有何间断点,并指出它的类型.
设z(χ,y)=χ3+y3-3χy(Ⅰ)-∞<χ<+∞,-∞<y<+∞,求z(χ,y)的驻点与极值点.(Ⅱ)D={(χ,y)|0≤χ≤2,-2≤y≤2},求证:D内的唯一极值点不是z(χ,y)在D上的最值点.
随机试题
消化性溃疡的临床特点。
肺泡与肺血管之问的气体交换过程为
甲状腺功能亢进的内科治疗宜选用
关于标底,下列说法正确的是()。
期货公司任用境外人士担任经理层人员职务的比例违反《期货公司董事、监事和高级管理人员任职资格管理办法》规定的,中国证监会及其派出机构可以责令公司更换或调整经理层人员。()
中国银行业协会的最高权力机构是()。
甲公司于2003年6月向乙公司订购一批木材,价值40万元,合同约定甲公司以银行汇票向乙公司付款,付款后10日内由丙仓储公司将货物发给甲公司。2003年6月17日,甲公司将自己手中的一张7月10日付款的、付款人为乙公司所在地B银行的银行汇票交给本公司
如果用甲、乙、丙三根水管同时向一个空水池里灌水,1小时可以灌满;如果用甲、乙两管,1小时20分钟可以灌满。若用丙管单独灌水,灌满这一池的水需要()小时。
社会主义公有制是我国经济制度的基础。社会主义公有制的两种基本形式是
ARecentErymologyoftheWord"Culture"“文化”一词的新词源Lookinanolddictionary—say,apre-1960Webster’s—andyou’lllikelyfin
最新回复
(
0
)