首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (2)求矩阵B.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (2)求矩阵B.
admin
2020-03-16
84
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,α
1
=(1,一1,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
一4A
3
+E,其中E为3阶单位矩阵.
(1)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
(2)求矩阵B.
选项
答案
(1)由Aα
1
=α
1
得A
2
α
1
=Aα
1
=α
1
,依次递推,则有A
3
α
1
=α
3
,A
5
α
1
=α
1
,故 Bα
1
=(A
5
一4A
3
+E)α
1
=A
5
α
1
一4A
3
α
1
+α
1
=-2α
1
,即α
1
是矩阵B的属于特征值一2的特征向量. 由关系式B=A
5
-4A
3
+E及A的3个特征值λ
1
=1,λ
2
=2,λ
3
=-2得B的3个特征值为μ
1
=-2,μ
2
=1,μ
3
=1. 设α
2
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又由A为对称矩阵,则B也是对称矩阵,因此α
1
与α
2
、α
3
正交,即α
1
T
α
2
=0,α
1
T
α
3
=0.因此α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解,即 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/NOA4777K
0
考研数学二
相关试题推荐
[2007年]=__________.
[2006年]设函数g(x)可微,h(x)=e1+g(x),h'(1)=1,g'(1)=2,则g(1)=().
[2006年]设函数y=f(x)具有二阶导数,且f′(x)>0,f″(x)>0,Δx为自变量x在点x0处的增量,Δy与dy分别为f(x)在点x0处对应的增量与微分,若Δx>0,则().
(2004年试题,三(8))设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解
(99年)设f(x)是区间[0,+∞)上单调减少且非负的连续函数,an==∫1nf(x)dx(n=1,2,…),证明数列{an}的极限存在.
[2011年]一容器的内侧是由图1.3.5.14中曲线绕y轴旋转一周而成的曲面,该曲面由x2+y2=2y(y≥1/2)与x2+y2=1(y≤1/2)连接而成.若将容器内盛满的水从容器顶点全部抽出至少需要做多少功?(长度单位为m,重力加速度为g
已知三阶矩阵A和三维向量x,使得x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x。记p=(x,Ax,A2x)。求三阶矩阵B,使A=PBP-1;
设有方程y’+P(x)y=x2,其中P(x)=试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
(98年)求函数在区间(0.2π)内的间断点,并判断其类型.
随机试题
焊接接头的四种基本形式不包括()接头。
作者用“推敲”的典故来说明斟酌文字就是调整思想感情,这种论证方法是
公司、企业进行会计核算不符合规定的有( )。
商品(劳务)税是指对商品(劳务)的流转额课征税收的总称,以下不属于商品(劳务)税的是()。
关于收入的确认,下列表述中正确的有()。
“南青北白”是指对()瓷器的描述。
《唐律疏议》规定,“诸断罪而无正条,其应出罪者,则();其应入罪者,则()”。
如下图所示,在直角三角形ABC中,肋与BC平行,三角形ABC面积为16.梯形EBCD面积与三角形AED面积比为3:1,已知肋长为1,则AB长为().
设数列χn与yn满足χnyn=0,则下列断言正确的是【】
Childrenneedexercise.Parentsoftenworrythat【C1】______timeforathleticsorevenforjustplayingontheJungleJimis
最新回复
(
0
)