首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (2)求矩阵B.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (2)求矩阵B.
admin
2020-03-16
87
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,α
1
=(1,一1,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
一4A
3
+E,其中E为3阶单位矩阵.
(1)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
(2)求矩阵B.
选项
答案
(1)由Aα
1
=α
1
得A
2
α
1
=Aα
1
=α
1
,依次递推,则有A
3
α
1
=α
3
,A
5
α
1
=α
1
,故 Bα
1
=(A
5
一4A
3
+E)α
1
=A
5
α
1
一4A
3
α
1
+α
1
=-2α
1
,即α
1
是矩阵B的属于特征值一2的特征向量. 由关系式B=A
5
-4A
3
+E及A的3个特征值λ
1
=1,λ
2
=2,λ
3
=-2得B的3个特征值为μ
1
=-2,μ
2
=1,μ
3
=1. 设α
2
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又由A为对称矩阵,则B也是对称矩阵,因此α
1
与α
2
、α
3
正交,即α
1
T
α
2
=0,α
1
T
α
3
=0.因此α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解,即 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/NOA4777K
0
考研数学二
相关试题推荐
函数f(x)=(x2一x—2)∣x3-x∣不可导点的个数是().
[2009年]计算不定积分∫ln(1+)dx(x>0).
[2010年]求函数u=xy+2yz在约束条件x2+y2+z2=10下的最大值和最小值.
[2012年]曲线y=的渐近线条数为().
设有曲线y=,过原点作其切线,求由此曲线、切线及x轴围成的平面图形绕x轴旋转一周所得到的旋转体的表面积.
(1996年)设f(χ)为连续函数.(1)求初值问题的解y(χ),其中a是正常数;(2)若|f(χ)|≤k(k为常数),证明:当χ≥0时,有|y(χ)|≤(1-e-aχ)
(03年)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导.且f’(x)>0.若极限存在.证明:(1)在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使(3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2一a2
(2000年试题,十一)函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式(1)求导数f’(x);(2)证明:当x≥0时,成立不等式:e-sf(x)≤1.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.求方程组AX=0的通解.
(98年)求函数在区间(0.2π)内的间断点,并判断其类型.
随机试题
关于违约、过失与欺诈的表述中,正确的是()
中国梦最核心的内容是()
马副蛔虫成虫寄生于马属动物的()
[问题一]对总监理工程师开工前所处理的两项工作是否妥当进行评价,并说明理由。如有不要之处,写出正确处理问题的程序。[问题四]指出上述竣工验收中的不妥之处?并改正之?
植物:光合作用:氧气
我国宪法修正案中,在统一战线的表述中,增加“社会主义事业的建设者”的是()
OnlybyunderstandingtheWebdeeply______hopeforpeopletograspitsfullpotential.
ThehomelessmakeupagrowingpercentageofAmerica’spopulation.【C1】______homelessnesshasreachedsuchproportionsthatlo
A—OnseasonJ—OffseasonB—GuidepracticeK—LocaltouristorganizationC—TravelpressL—Board
Accordingtoasurvey,whichwasbasedontheresponsesofover188,000students,today’straditional-agecollegefreshmenare"
最新回复
(
0
)