首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (2)求矩阵B.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (2)求矩阵B.
admin
2020-03-16
66
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,α
1
=(1,一1,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
一4A
3
+E,其中E为3阶单位矩阵.
(1)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
(2)求矩阵B.
选项
答案
(1)由Aα
1
=α
1
得A
2
α
1
=Aα
1
=α
1
,依次递推,则有A
3
α
1
=α
3
,A
5
α
1
=α
1
,故 Bα
1
=(A
5
一4A
3
+E)α
1
=A
5
α
1
一4A
3
α
1
+α
1
=-2α
1
,即α
1
是矩阵B的属于特征值一2的特征向量. 由关系式B=A
5
-4A
3
+E及A的3个特征值λ
1
=1,λ
2
=2,λ
3
=-2得B的3个特征值为μ
1
=-2,μ
2
=1,μ
3
=1. 设α
2
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又由A为对称矩阵,则B也是对称矩阵,因此α
1
与α
2
、α
3
正交,即α
1
T
α
2
=0,α
1
T
α
3
=0.因此α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解,即 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/NOA4777K
0
考研数学二
相关试题推荐
[2002年]设y=y(x)是二阶常系数线性微分方程y"+py'+qy=e3x满足初始条件.y(0)=y'(0)=0的特解,则当x→0时,函数[ln(1+x2)]/y(x)的极限().
[2018年]求不定积分∫e2xarctan
[2015年]已知函数f(x,y)满足f″xy(x,y)=2(y+1)ex,f′x(x,0)=(x+1)ex,f(0,y)=y2+2y,求f(x,y)的极值.
[2011年]设函数y=y(x)由参数方程确定.求y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点.
(12年)已知函数f(x)=(I)求a的值;(Ⅱ)若当x→0时,f(x)一a与xk是同阶无穷小,求常数k的值.
(2006年试题,一)广义积分
已知A,B为三阶非零矩阵,且。β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求Bx=0的通解。
已知n阶矩阵A满足A3=2E,B=A2-2A+2E,求(B一E)-1.
求下列极限:
[2015年]设矩阵.若集合Ω={1,2},则线性方程组AX=b有无穷多解的充分必要条件为().
随机试题
甲涉嫌盗窃罪被逮捕。甲父为其申请取保候审,公安机关要求甲父交纳10万元保证金。甲父请求减少保证金的数额。公安机关在确定保证金数额时应当考虑下列哪些情况?()
Peopledonotanalyseeveryproblemtheymeet.Sometimestheytrytoremembersolutionfromthelasttimetheyhada【21】problem.
《联合国宪章》规定负责条约登记的机关是:()
某单回路500kV架空送电线路采用4分裂LGJ-500/40导线,导线的基本参数如下表所示。注:拉断力为实验保证拉断力。该线路的主要气象条件为:最高温度40℃,最低温度一40℃,年平均气温10℃,最大风速28m/s(同时气温一5℃),最大覆冰厚度10
下列各项中适用《反垄断法》的有( )。
负债是企业承担的现时义务,包括法定义务和推定义务。()
设循环队列的存储空间为Q(1:m),初始状态为front=rear=m。经过一系列正常的操作后,front=1,rear=m。为了在该队列中寻找值最大的元素,在最坏情况下需要的比较次数为
下列程序的运行结果是>>>s=’PYTHON’>>>“{0:3}”.format(s)
Whatisthereportmainlyabout?
Mosttaxpayershavehadenoughincometaxcollectedbytheiremployersduringtheyear.Sotheydonot(36)anymoney.Infact,
最新回复
(
0
)