首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵.证明: (1)存在实数c,使对一切χ∈Rn,有|χTAχ|≤cχTχ. (2)若A正定,则对任意正整数k,Ak也是对称正定矩阵. (3)必可找到一个数a,使A+aE为对称正定矩阵.
设A是n阶实对称矩阵.证明: (1)存在实数c,使对一切χ∈Rn,有|χTAχ|≤cχTχ. (2)若A正定,则对任意正整数k,Ak也是对称正定矩阵. (3)必可找到一个数a,使A+aE为对称正定矩阵.
admin
2016-06-30
86
问题
设A是n阶实对称矩阵.证明:
(1)存在实数c,使对一切χ∈R
n
,有|χ
T
Aχ|≤cχ
T
χ.
(2)若A正定,则对任意正整数k,A
k
也是对称正定矩阵.
(3)必可找到一个数a,使A+aE为对称正定矩阵.
选项
答案
(1)设A的特征值为λ
1
,λ
2
,…,λ
n
.令c=max{|λ
1
|,|λ
2
|,…,|λ
n
|},则存在正交变换χ=Py,使χ
T
Aχ=[*]λ
i
y
i
2
,且y
T
y=χ
T
χ,故|χ
T
Aχ|=[*]=cy
T
y=cχ
T
χ. (2)设A的特征值为λ
1
,…,λ
n
,则λ
i
>0(i=1,…,n),于是,由A
k
的特征值为λ
1
k
,…,λ
n
k
,它们全都大于0,可知A
k
为正定矩阵. (3)因为(A+aE)
T
=A+aE,所以A+aE对称.又若A的特征值为λ
1
,…,λ
n
,则A+aE的特征值为λ
1
+a,…,λ
n
+a.若取a=max{|λ
1
|+1,…,|λ
n
|+1},则λ
i
+a≥λ
i
+|λ
i
|+1≥1,所以A+aE正定.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/N9t4777K
0
考研数学二
相关试题推荐
下列命题不正确的是().
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:S2=为参数σ2的无偏估计量.
设X1,X2,…,Xn(n>2)是来自总体X~N(0,1)的简单随机样本,记Yi=Xi-(i=1,2,…,n).求:(1)D(Yi);(2)Cov(Y1,Yn).
设随机变量(X,Y)的联合密度函数为求P(X>2Y);
证明不存在。
设有方程x4+ax+b=0.当a,b满足何种关系时,方程有唯一实根。
设函数f(x)在(-∞,+∞)上满足2f(1+x)+f(1-x)=ex,试求f’(x)。
设f(u)可导,y=f(x2)在x0=-1处取得增量△x=0.05时,函数增量△y的线性部分为0.15,则f’(1)=________.
由行列式的性质,得:[*]
设A,B为同阶方阵,(I)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(I)的逆命题不成立.(Ⅲ)当A,B均为实对称矩阵时,试证(I)的逆命题成立.
随机试题
三羧酸循环中脱氢的部位是:()
设A为n阶方阵,Ax=0是非齐次方程组Ax=b的导出组,则下面结论不一定成立的是().
下列对城市规划实施与公共政策之间关系的理解不正确的是()。
工程项目施工进度计划有()。
下列事项中,构成企业费用的是()。
小李收到了一份通知邮件,附件里有一个PDF文件,关于这个文件说法正确的是()。
中国特色社会主义理论体系的精髓是:
设可微函数f(x,y)在点(x0,y0)取得极小值,则下列结论正确的是
Bythe1820’sintheUnitedStates,whensteamboatswerecommononwesternwaters,theseboatsweremostlypoweredbyenginesbu
A、Theshockabusinessmanfeelswhenthereisnoroomforbargaining.B、TheshockPeaceCorpvolunteerssufferedfrominBorneo.
最新回复
(
0
)