首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵,且r(A)=. (Ⅰ)证明方程组AX=b有且仅有n一r+1个线性无关解; (Ⅱ)若有三个线性无关解,求a,b及方程组的通解.
设A为m×n矩阵,且r(A)=. (Ⅰ)证明方程组AX=b有且仅有n一r+1个线性无关解; (Ⅱ)若有三个线性无关解,求a,b及方程组的通解.
admin
2017-02-28
91
问题
设A为m×n矩阵,且r(A)=
.
(Ⅰ)证明方程组AX=b有且仅有n一r+1个线性无关解;
(Ⅱ)若
有三个线性无关解,求a,b及方程组的通解.
选项
答案
(Ⅰ)令ξ
1
,ξ
2
,…,ξ
n—r
的基础解系,η
0
为AX=b的特解,显然β
0
=η
0
,β
1
=ξ
1
+η
0
,…,β
n—r
=ξ
n—r
+η
0
为Ax=b的一组解,令k
0
β
0
+k
1
β
1
+…+k
n—r
β
n—r
=0,即k
1
ξ
1
+k
2
ξ
2
+…+k
n—r
ξ
n—r
+(k
0
+k
1
+…+k
n—r
)η
0
=0. 上式左乘A得(k
0
+k
1
+…+k
n—r
)b=0,因为b≠0时,k
0
+k
1
+…+k
n—r
=0,于是k
1
ξ
1
+k
2
ξ
2
+…+k
n—r
ξ
n—r
=0,因为ξ
1
,ξ
2
,…,ξ
n—r
为AX=0的基础解系,所以k
1
=k
2
=…=k
n—r
=0,于是k
0
=0,故β
0
,β
1
,…,β
n—r
线性无关. 若γ
0
,γ
1
,…,γ
n—r+1
为AX=b的线性无关解,则ξ
1
=γ
1
一γ
0
,…,ξ
n—r+1
=γ
n—r+1
一γ
0
为AX=0的解,令k
1
ξ
1
+k
2
ξ
2
+…+k
n—r+1
ξ
n—r+1
=0,则 k
1
γ
1
+k
2
γ
2
+…+k
n—r+1
γ
n—r+1
一(k
1
+k
2
+…+k
n—r+1
)y0=0. 因为γ
0
,γ
1
,…,γ
n—r+1
线性无关,所以k
1
=k
2
=…=k
n—r
=0,即ξ
1
,ξ
2
,…,ξ
n—r+1
为AX=0的线性无关解,矛盾,故方程组AX=b恰有n一r+1个线性无关解. (Ⅱ)令A=[*],化为AX=β.因为AX=β有三个非零解,所以AX=0有两个非零解,故4一r(A)≥2,r(A)≤2,又 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Mtu4777K
0
考研数学一
相关试题推荐
[*]
已知某股票一年以后的价格X服从对数正态分布,当前价格为10元,且EX=15,DX=4.求其连续复合年收益率的分布.
用指定的变量替换法求:
设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是
由题设,引入辅助函数,即g(x)=ex,则f(x)与g(x)在区间[a,b]上满足柯西中值定理的条件,所以知存在一点η∈(a,b),使得[*]
微分方程xy’+2y=xlnx满足y(1)=-1/9的解为__________.
设已知线性方程组Ax=b存在2个小吲的解.求λ,a;
求曲面x2+(y一1)2=1介于xOy平面与曲面(x2+y2)之间的部分的面积.
设由流水线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品。销售每件合格品获利,销售每件不合格品亏损。已知销售利润T(单位:元)与销售零件的内径X有如下关系:问平均内径μ取何值时,销售一个零
设函数f(x)在区间(-δ,δ)内有定义,若当x∈(-δ,δ)时,恒有|f(x)|≤x2,则x=0必是f(x)的()
随机试题
燃烧的充分条件是()。
卡比多巴:金刚烷胺:
有关泌尿男性生殖系结核,下列哪项是恰当的
患者男,60岁。冠心病,阵发性夜间呼吸困难。查体:血压130/100mmHg,心界左下扩大,心尖部Ⅳ级收缩期杂音,两肺散在干鸣音,双下肢无水肿,心电图示阵发性心动过速。最适宜的治疗为
执业药师需要特殊提醒的用药人群是()。
甲公司将承建的建筑工程承包给无特种作业操作资格证书的邓某.邓某在操作时引发事故。某省建设厅作出暂扣甲公司安全生产许可证三个月的决定,市安全监督管理局对甲公司罚款三万元。甲公司对市安全监督管理局罚款不服。向法院起诉。下列哪些选项是正确的?(2009年卷二第8
根据《中华人民共和国民法通则》的规定,下列争议中,诉讼时效期限为一年的有()。
标志我国进入社会主义初级阶段的重大事件是()。
甲、乙、丙、丁四公司之间形成了三角债。甲建材公司拖欠丙钢铁公司货款170万元。乙建筑工程公司欠甲建材公司材料款180万元。乙建筑工程公司在给丁科研所建好一幢大楼后,因资金尚未到位,丁科研所尚欠乙建筑工程公司工程款180万元。为了尽早了结债务,2008年8月
设f(x)在[0,a]二次可导且f(0)=0,f″(x)<0.求证:在(0,a]单调下降.
最新回复
(
0
)