首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)在[0,1]上连续,在(0,1)内可导。且f(0)=0,f(1)=1. 证明: (1)存在ξ∈(0,1)使得f(ξ)=1—ξ; (2)存在两个不同的点η,ζ∈(0,1)使得f’(η)f’(ζ)=1.
已知函数f(x)在[0,1]上连续,在(0,1)内可导。且f(0)=0,f(1)=1. 证明: (1)存在ξ∈(0,1)使得f(ξ)=1—ξ; (2)存在两个不同的点η,ζ∈(0,1)使得f’(η)f’(ζ)=1.
admin
2021-01-19
72
问题
已知函数f(x)在[0,1]上连续,在(0,1)内可导。且f(0)=0,f(1)=1.
证明:
(1)存在ξ∈(0,1)使得f(ξ)=1—ξ;
(2)存在两个不同的点η,ζ∈(0,1)使得f’(η)f’(ζ)=1.
选项
答案
(1)令F(x)=f(x)-1+x,则F(x)在[0.1]上连续,且F(0)=-1<0,F(1)=1>0,于是由介值定理知,存在ξ∈(0,1)使得F(∈)=0,即f(ξ)=1-ξ. (2)在[0,ξ]和[ξ,1]上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点η∈(0,ξ),ζ∈(ξ,1),使得[*] 于是[*]
解析
(1)显然用闭区间上连续函数的介值定理;(2)为双介值问题,可考虑用拉格朗日中值定理,但应注意利用(1)的结论.
转载请注明原文地址:https://www.kaotiyun.com/show/Mt84777K
0
考研数学二
相关试题推荐
设f(x)二阶可导,f(0)=f(1)=0且.证明:存在ξ∈(0,1),使得f’’(ξ)≥8.
求函数的间断点并指出其类型.
求极限
设函数f(y)的反函数f一1(x)及f’[f一1(x)]与f"[f一1(x)]都存在,且f一1[f一1(x)]≠0.证明:。
设二维随机向量(X,Y)服从D={(x,y)|0≤x≤1,0≤y≤2}上的均匀分布.求(1)P{3X≥Y};(2)Z=min{X,Y}的密度函数.
设V是向量组α1=(1,1,2,3)T,α2=(一1,1,4,一1)T,α3=(5,一1,一8,9)T所生成的向量空间,求V的维数和它的一个标准正交基.
求极限。
设一阶非齐次线性微分方程y’+p(x)y=Q(x)有两个线性无关的解y1,y2,若αy1+βy2也是该方程的解,则应有α+β=_______.
证明极限不存在.
随机试题
毛细血管内增生性肾小球肾炎的常见临床症状为
A、牛黄B、熊胆C、麝香D、人参E、蟾蜍含有麝香酮的是
法律顾问参与重大经营决策,应准确了解有关当事人的资信情况,主要内容有()。
中国A公司与德国B公司因双方合同中仲裁条款的效力问题在我国涉诉。双方在合同中约定仲裁机构为位于巴黎的国际商会仲裁院,仲裁地为斯德哥尔摩,但对该仲裁条款应适用的法律未作约定。依我国现行司法解释,我国法院审查该仲裁条款效力时,应适用下列哪国的法律?
由于许多国家已不使用出口税和()税,因而通常提到的关税是指进口税。
某高速公路工程的合同工程量清单“说明”中列明了“工程一切险”的保险费率为0.5%;第三方责任险的投保金额为10万元,保险费率为1.0%。A施工单位投标书中的工程量清单100章填报的保险费总额为37560元,A施工单位中标后,按规定办理了投保。在施工过程中发
某高程测量,已知A点高程为HA,欲测得B点高程HB,安置水准仪于A、B之间,后视读数为a,前视读数为b,则B点高程HB为()。
下列选项中,不属于总会计师权限范畴的是()。
小张办公室挂钟的时间跟实际标准时间相差几分钟,他对照挂钟将自己的手机时间调快了3分钟,又对照手机的时间将手表调慢了5分钟。今天早上小张在手表时间的8点30分到达办公室打卡时,发现自己迟到一分钟,已知打卡器的时间为标准时间,则标准时间与挂钟时间相比()。
认识中国近代一切社会问题和革命问题的最基本的依据是()
最新回复
(
0
)