首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,β1,β1为三维列向量组,且α1,α2与β1,β2都线性无关. (1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示; (2)设,求出可由两组向量同时线性表示的向量.
设α1,α2,β1,β1为三维列向量组,且α1,α2与β1,β2都线性无关. (1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示; (2)设,求出可由两组向量同时线性表示的向量.
admin
2018-04-18
76
问题
设α
1
,α
2
,β
1
,β
1
为三维列向量组,且α
1
,α
2
与β
1
,β
2
都线性无关.
(1)证明:至少存在一个非零向量可同时由α
1
,α
2
和β
1
,β
2
线性表示;
(2)设
,求出可由两组向量同时线性表示的向量.
选项
答案
(1)因为α
1
,α
2
,β
1
,β
2
线性相关,所以存在不全为零的常数k
1
,k
2
,l
1
,l
2
,使得 k
1
α
1
+k
2
α
2
+l
1
β
1
+l
2
β
2
=0,或k
1
α
1
+k
2
α
2
=-l
1
β
1
-l
2
β
2
. 令γ=k
1
α
1
+k
2
α
2
=-l
1
β
1
-l
2
β
2
因为α
1
,α
2
与β
1
,β
2
都线性无关,所以k
1
,k
2
及l
1
,l
2
都不全为零,所以γ≠0. (2)令k
1
α
1
+k
2
α
2
+l
1
β
1
+l
2
β
2
=0, [*] 所以γ=kα
1
-3kα
2
=-kβ
1
+0β
2
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Mjk4777K
0
考研数学二
相关试题推荐
设A为3阶矩阵,α1,α2为A的分别属于特征值-1、1的特征向量,向量α3满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求P-1AP.
设n阶方程A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…γn),记向量组(I):α1,α2,…,αn,(Ⅱ):β1,β2,…,βn,(Ⅲ):γ1,γ2,…,γn,如果向量组(Ⅲ)线性相关,则().
已知λ1=6,λ2=λ3=3是实对称矩阵A的三个特征值.且对应于λ2=λ3=3的特征向量为α2=(-1,0,1)T,α3=(1,-2,1)T,求A对应于λ1=6的特征向量及矩阵A.
设A为3阶矩阵,P为3阶可逆矩阵,且,若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=().
设f(x)在(-∞,+∞)内可微,证明:在f(x)的任何两个零点之间必有f(x)+fˊ(x)的一个零点.
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在f∈(0,1),使得f(ξ)=1-ξ;
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
矩阵相似的充分必要条件为
随机试题
试述不良生活方式对健康影响的特点。
下列各组中,每个成员都是词的是()
系统设计分为总体设计和( )两个阶段。
自然人开始享有名誉权的时间是()
以下何项不是郁匪的临床特点
关于共价修饰调节酶下面说法正确的是()。
某建设工程项目建设单位委托某监理公司负责施工阶段的监理工作。经过公开招标由A工程公司总承包该工程施工阶段的任务。该项目工程中的玻璃幕墙工程分包给了B公司。在工程的施工准备阶段,总监理工程师审查了施工总承包单位报送的有关分包单位企业营业执照资料。在工程施工过
DM广告的形式不包括()。
用于内隐记忆研究的加工分离程序,其基本假设包括()(2010.73)
Duetoaconstantly(71)environment,apoorunderstandingoftheuser’sneedsandpreferences,aswellasa(72)ofwillingnessto
最新回复
(
0
)