首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内可微,证明:在f(x)的任何两个零点之间必有f(x)+fˊ(x)的一个零点.
设f(x)在(-∞,+∞)内可微,证明:在f(x)的任何两个零点之间必有f(x)+fˊ(x)的一个零点.
admin
2013-03-15
110
问题
设f(x)在(-∞,+∞)内可微,证明:在f(x)的任何两个零点之间必有f(x)+fˊ(x)的一个零点.
选项
答案
证:作辅助函数F(x)=f(x)e
x
显然F(x)在[α,β]上连续,且在(α,β)内可微,其中α,β为f(x)的任意两个零点,即f(α)=f(β)=0,且α<β F(α)=f(a)e
a
=0=f(β)e
β
=F(β) 可知F(x)在[α,β]上满足罗尔定理的条件,于是至少存在一点ε∈(α,β),使Fˊ(ε)=0.即e
ε
f(ε)+e
ε
fˊ(ε)=0,亦即f(ε)+fˊ(ε)=0.命题得证.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/V7C4777K
0
考研数学二
相关试题推荐
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t).(1)当t为何值时,向量组α1,α2,α3线性无关?当t为何值时,向量组α1,α2,α3线性相关?(2)当α1,α2,α3线性相关时,将α3表示为α1和α2的线性组合.
甲袋中有3个白球,5个黑球;乙袋中有4个白球,5个黑球.现从甲、乙袋中各取一球交换后放回袋中,则甲袋中白球数不变的概率为___________________.
设z=f(xy2,x2y),其中f具有二阶连续偏导数,则________________.
已知y1=x,y2=ex,y3=e2x。是微分方程y"+P(x)y’+q(x)y=f(x)的3个特解,则该微分方程的通解为().
设f(xz)的一个原函数为xnln(1+x),g(x)=,如果当x→0时,f(x)与g(x)是等价无穷小,则().
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)f(1)>0,f(0)<0,证明:对任意常数λ,存在ξ∈(0,1),使得.
将一枚硬币抛n次,X表示正面向上的次数,Y表示反面向上的次数,则X和Y的相关系数为().
求在区间(-∞,+∞)内的连续函数f(x),使其满足方程
(2013年)当x→0时,1一cosx.cos2x.cos3x与axn为等价无穷小,求n与a的值。
设有一个边长为a的质地均匀的正立方体Γ沉入一个体积很大的水池,假设水池的水深为a,并且立方体Γ的上表面恰好与水面重合,又设水的密度为ρ,立方体Γ的密度为kp,其中k>1为常数,重力加速度为g.试利用定积分方法计算将立方体Γ提升出水面需要做的功.
随机试题
根据“十三五”规划纲要,实施工业强基工程要重点突破“四基”瓶颈。下列选项中,属于“四基”的有()。
Ifheopenedtheotherdoor,aladycameout.(63)Thekingalwayschosetheladieshimself.(64)Hemadesurethateachwasof
无因管理的事务()
下列关于慢性缺氧表现的叙述,正确的是
患者,男性,45岁。诉左下颌后牙出现不适6个月求治。口腔检查:左下第二前磨牙和第一磨牙残冠,叩诊(±),松动(-),已做过牙髓治疗,牙龈稍红,无法再修复,拟拔除。口内其他牙未见明显异常。X线片示:左下第一磨牙远中根尖有阴影,距离下颌神经管较近。左下第二
根据施工进度的工期延误的有关规定,若一周内非承包人原因停水、停电、停气造成停工而使工期延误累计达()小时,承包人不承担违约责任。
依据法律关系主体的权利人性质不同,由政府代表国家行使教育权利被称为()。
数据库管理系统是( )。
单击“字处理”按钮,然后按照题目要求完成下面的操作。注意:以下的文件必须保存在考生文件夹下。在考生文件夹下打开文档word.docx,按照要求完成下列操作并以该文件名(word.docx)保存文件。按照参考样式“word参考样
Theworldwideconsumptionofbakeryproductsisincreasing.Manypopulationsthatformerlyreliedsolelyonriceorcoarsergrai
最新回复
(
0
)