首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(aij)3×3满足A*=AT,其中A*是A的伴随矩阵,AT是A的转置矩阵,若a11,a12,a13是3个相等的正数,则a11=______________________.
设矩阵A=(aij)3×3满足A*=AT,其中A*是A的伴随矩阵,AT是A的转置矩阵,若a11,a12,a13是3个相等的正数,则a11=______________________.
admin
2021-02-25
103
问题
设矩阵A=(a
ij
)
3×3
满足A
*
=A
T
,其中A
*
是A的伴随矩阵,A
T
是A的转置矩阵,若a
11
,a
12
,a
13
是3个相等的正数,则a
11
=______________________.
选项
答案
[*]
解析
本题考查行列式按行(列)展开定理、矩阵与其伴随矩阵的行列式的关系.要求考生应用行列式的性质,展开定理、矩阵与其伴随矩阵的行列式的关系计算行列式.
由|A
T
|=|A
*
|和|A
*
|=|A|
3-1
=|A|
2
,得|A|
2
=|A|,即
|A|(|A|-1)=0,从而|A|=0或|A|=1.
将|A|按第一行展开,再由A
*
=A
T
知a
ij
=A
ij
得
|A|=a
11
A
11
+a
12
A
12
+a
13
A
13
=a
2
11
+a
2
12
+a
2
13
=3a
2
11
>0,
于是得|A|=1,即3a
2
11
=1,故a
11
=
.
转载请注明原文地址:https://www.kaotiyun.com/show/Me84777K
0
考研数学二
相关试题推荐
设A,B为n阶矩阵,且r(A)+r(B)<n.证明:A,B有公共的特征向量.
已知α1,α2都是3阶矩阵A的特征向量.特征值分别为-1和1,又3维向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关.
设二次型经过正交变换X=QY化为标准形,求参数a,b及正交矩阵Q.
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
已知A是三阶矩阵,αi(i=1,2,3)是三维非零列向量,令α=α1+α2+α3。若Aαi=iαi(i=1,2,3),证明:α,Aα,A2α线性无关。
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。求a的值;
设3阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,2α2),则P一1AP=__________.
若3阶非零方阵B的每一列都是方程组的解,则λ=______,|B|=_______.
设A,B为3阶方阵,且|A|=1,|B|=2,|A-1+B|=2,则|A+B-1|=__________.
随机试题
主治阴虚血少,神志不安证之心悸失眠用
常见远中舌侧根管的牙是
背景:北方某房屋建筑工程,地上20层,地下2层,建筑面积22000m2。桩基,冻土层厚800mm,地上剪力墙结构。质量目标:合格。工期450日历天。施工单位中标后成立了项目部,并于2009年11月15日进场。施工过程中发生了如下事件:
工程建设投资可以分为静态投资部分和动态投资部分,工程项目建设投资可以包括( )。
申请股票在交易所上市,总股本不超过4亿元的,向社会公开发行的股份应达公司股份总数的25%以上。()
从社会心理学角度看,离婚的原因有()。
幼儿园综合性课程
简述维也纳体系的形成。
设顺序表的长度为n。下列算法中,最坏情况下比较次数等于n(n﹣1)/2的是()。
Itisnevertooearlyforyoutolearnaboutthevalueofmoneyasateenager.Manyteenshaveno【B1】______whatittakestoearn
最新回复
(
0
)