首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1993年)设在[0,+∞)上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0。证明f(x)在(0,+∞)内有且仅有一个零点.
(1993年)设在[0,+∞)上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0。证明f(x)在(0,+∞)内有且仅有一个零点.
admin
2018-06-30
62
问题
(1993年)设在[0,+∞)上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0。证明f(x)在(0,+∞)内有且仅有一个零点.
选项
答案
证1 在[0,+∞)上,由f’(x)≥k,得[*]即f(x)≥kx+f(0).取[*]有[*]因f(x
1
)>0,由题设f(0)<0,则[*]x
0
∈(0,x
1
)使f(x
0
)=0. 又f’(x)≥k>0,故f(x)严格单调增,所以f(x)在(0,+co)内有且仅有一个零点. 证2 本题的关键是在(0,+∞)上找一点,使f(x
1
)>0.由题设f’(x)≥k可知,曲线y=f(x)应在直线y=kx+f(0)上方,如图2.3,只要求求出直线y=kx+f(0)与x轴的交点[*]则必有f(x
1
)≥0. [*] 事实上 [*] 则f(x
1
)≥0. 若f(x
1
)=0,则x
1
即为f(x)的零点.若f(x
1
)>0,由介值定理知[*]x
0
∈(0,x
1
)使f(x
0
)=0,唯一性与证1相同.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/MRg4777K
0
考研数学一
相关试题推荐
设f(x,y)是{(x,y)|x2+y2≤1)上的二阶连续可微函数,满足,计算积分
设某箱装有100件产品,其中一、二、三等品分别为80件、10件和10件,现从中随机抽取一件,记Xi=(i=1,2,3).(1)求(X1,X2)的联合分布;(2)求X1,X2的相关系数.
设总体X一N(0,σ2),参数σ>0未知,X1,X2,…,Xn是取自总体X的简单随机样本(n>1),令估计量(Ⅰ)验证的无偏性;(Ⅱ)求方差并比较其大小.
设则下列矩阵中与A合同但不相似的是
(2010年)设P为椭球面S:x2+y2+z2一yz=1上的动点,若S在点P的切平面与xOy面垂直,求P点的轨迹C并计算曲面积分其中∑是椭球面S位于曲线C上方的部分。
(1998年)求
设求实对称矩阵B,使A=B2.
(1996年)设一平面经过原点及(6,一3,2),且与平面4x—y+2z=8垂直,则此平面方程为___________________.
(1994年)设则在点处的值为___________.
(2000年)设有一半径为R的球体,P0是此球的表面上的一个定点,球体上任一点的密度与该点到P0距离的平方成正比(比例常数k>0),求球体的重心位置。
随机试题
能缓解服用瓜蒂所致的呕吐不止的药物是
正常成人每24h的原尿可达()
肾脏重吸收物质最重要的部位是
患者女,43岁。以广泛性焦虑障碍入院,广泛性焦虑障碍的症状不包括
国际贸易中,CFR交货方式下买方的基本义务有()。
按照我国
作为资产评估客体的资产,存在形式是多种多样的,按()形式划分可将资产分为有形资产和无形资产。
关于投资性房地产转换日的确定,下列说法中,正确的有()。
Manyfinecooksinsistoningredientsofthehighestquality.
Impressionismisaformofartthatbeganinthe1870’s.Whenyoulookcloselyatanimpressionistpainting,youseelittledots
最新回复
(
0
)