首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1999年)设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,试证: (I)存在,使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)一λ[f(ξ)一ξ]=1。
(1999年)设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,试证: (I)存在,使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)一λ[f(ξ)一ξ]=1。
admin
2019-05-11
103
问题
(1999年)设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,
试证:
(I)存在
,使f(η)=η;
(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)一λ[f(ξ)一ξ]=1。
选项
答案
(I)构造函数F(x)=f(x)一x,则F(x)在区间[0,1]上连续,在(0,1)内可导,且[*],F(1)=f(1)一1=0—1=一1<0, 所以由介值定理得,存在一点[*],使得F(η)=f(η)一η=0,即存在一点[*]使得f(η)=η,原命题得证。 (Ⅱ)令 f’(x)一λ[f(x)一x]一1=0, 解微分方程得f(x)=x+Ce
λx
,即e
-λx
(f(x)一x)=C,令 G(x)=e
-λx
[f(x)一x]。 因为 G(0)=e
0
(f(0)一0)=0,G(η)=e
-λη
(f(η)一η)=0, 所以,在(0,η)上由罗尔定理知,必然存在点ξ∈(0,η),使得G’(ξ)=0,即 G’(ξ)=一λe
-λξ
(f(ξ)一ξ)+e
-λξ
(f’(ξ)一1) =e
-λξ
(一λf(ξ)+λξ+f’(ξ)一1)=0, 即 f’(ξ)一λ[f(ξ)一ξ]=1。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/MIJ4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn(n>2)是来自总体X~N(0,1)的简单随机样本,记Yi=Xi-(i=1,2,…,n).求:(1)D(Yi);(2)Cov(Y1,Yn).
设随机变量X~F(m,m),令P=P(X≤1),q=P(X≥1),则().
设f(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x1,x2∈[a,b]满足:f[tx1+(1-t)x2]≤tf(x1)+(1-t)f(x2).证明.
求函数y=ln(x+)的反函数.
设f(x)是连续函数.(1)求初值问题的解,其中a>0;(2)若|f(x)|≤k,证明:当x≥0时,有|y(x)|≤(eax-1).
设函数f(x)可导且0≤f’(x)≤(k>0),对任意的xn,作xn+1=f(xn)(n=0,1,2,…),证明:xn存在且满足方程f(x)=x.
设总体X的密度函数为f(x)=X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量.
设z=f(x,y)在点(1,1)处可微,f(1,1)=1,f′1(1,1)=a,f′2(1,1)=b,又u=f[x,f(x,x)],求
确定常数a,c的值,使得其中c,为非零常数.
设x=rcosθ,y=rsinθ,将如下直角坐标系中的累次积分化为极坐标系中的累次积分.
随机试题
计算机动画是采用计算机生成一系列可供实时演播的连续画面的一种技术。设电影每秒钟放映24帧画面,则现有2800帧图像,它们大约可在电影中播放_______分钟。
【B1】【B18】
流脑的主要传播方式是
下列哪种药物通过促进或恢复凝血过程而起到止血的效果()
情景分析有助于商业银行深刻理解并预测在单一风险因素作用下,其整体流动性风险可能出现的不同状况。()
简述教学工作的基本环节。
当前素质教育的核心是培养学生的()。
下列四句话中,意思与其他三句不同的是:
如果让我来决定我们是要一个没有自行车的城市,还是要一个没有汽车的城市,我会毫不犹豫地选择后者。
______atHarvard,hebegantowritehisessay.
最新回复
(
0
)