首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。 (Ⅰ)计算PTDP,其中P= (Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA—1C是否为正定矩阵,并证明结论。
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。 (Ⅰ)计算PTDP,其中P= (Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA—1C是否为正定矩阵,并证明结论。
admin
2017-01-21
96
问题
设D=
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。
(Ⅰ)计算P
T
DP,其中P=
(Ⅱ)利用(Ⅰ)的结果判断矩阵B—C
T
A
—1
C是否为正定矩阵,并证明结论。
选项
答案
[*] (Ⅱ)由(Ⅰ)中结果知矩阵D与矩阵M=[*]合同,又因D是正定矩阵,所以 矩阵M为正定矩阵,从而可知M是对称矩阵,那么B—C
T
A
—1
C是对称矩阵。 对m维零向量x=(0,0,…,0)
T
和任意n维非零向量y=(y
1
,y
2
,y
n
)
T
,都有 (x
T
,y
T
)[*] 可得 y
T
(B—C
T
A
—1
C)y>0, 依定义,y
T
(B—C
T
A
—1
C)y为正定二次型,所以矩阵B—C
T
A
—1
C为正定矩阵。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/M9H4777K
0
考研数学三
相关试题推荐
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):ATAX=0,必有
A是n阶矩阵,且A3=0,则().
设向量组α1,α2,…,αs线性无关,作线性组合β1=α1+μ1αs,β2=α2+μ2αs,…,βs-1=αs-1+μs-1αs,则向量组β1,β2,…,βs-1线性无关,其中s≥2,μi为任意实数.
设函数f(x)在[0,π]上连续,且试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使(ξ1)=f(ξ2)=0.
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性相关?
设矩阵已知线性方程组AX=β有解但不唯一,试求(I)a的值;(Ⅱ)正交矩阵Q,使QTAQ为对角矩阵.
设函数f(x)∈C[a,b],且f(x)>0,D为区域a≤x≤b,a≤y≤b,证明:(b-a)2.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为求Anβ.
已知二次型f(x1,x2,x3)=x12+ax22+x32+2x1x2-2ax1x3-2x2x3的正、负惯性指数都是1,则a=_________.
一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克.若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.(φ(2)=0.977,其中φ(x)是标准正态分布函数
随机试题
有n个进程竞争必须互斥使用的共享资源。若采用PV操作管理,则可能出现的信号量最小值是_______。
觉顶脑渐辟,痛不可禁,顾亦忍而不号。(《席方平》)顾:
患者,男,35岁。因高热、皮肤瘙痒半个月来诊。查体:右颈部、锁骨上淋巴结肿大,互相粘连,无压痛。检测白细胞10×109/L,中性0.66,淋巴0.24,血红蛋白90g/L;骨髓涂片可见R—S细胞。常用的化疗方案是
下列关于良好医务人员之间关系产生的整体效应的提法中,错误的是
方药配伍旨在"益火之源,以消阴翳"的方剂是()
宜选用塞来昔布治疗的疾病是()。
劳动争议仲裁委员会的组成人员应当是()。
隋炀帝为收罗人才,颁布“若有明行显著,操履修洁,及学业才能,一艺可取,咸宜访采,将身入朝。所在州县,以礼发遣”的诏书,于大业年间置进土科。这标志着()。
针对作弊屡禁不止的现象,某学院某班承诺,只要全班同学都在承诺书上签字,那么,如果全班有一人作弊,全班同学的考试成绩都以不及格计。校方接受并实施了该班的这一承诺。结果班上还是有人作弊,但班长的考试成绩是优秀。从上述判断逻辑得出的结论是()。
在就绪队列中,一旦有优先级高于当前运行进程优先级的进程存在时,便立即对进程进行调度,转让CPU,这叫做()。
最新回复
(
0
)