首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y=fi(x)(i=1,2)具有二阶连续导数,且fi"(x)<0(i=1,2),若两条曲线y=fi(x)(i=1,2)在点(x0,y0)处具有公切线y=g(x),且在该点处曲线y=f1(x)的曲率大于曲线y=f2(x)的曲率,则在点x。的某个邻域内,
设函数y=fi(x)(i=1,2)具有二阶连续导数,且fi"(x)<0(i=1,2),若两条曲线y=fi(x)(i=1,2)在点(x0,y0)处具有公切线y=g(x),且在该点处曲线y=f1(x)的曲率大于曲线y=f2(x)的曲率,则在点x。的某个邻域内,
admin
2018-04-14
92
问题
设函数y=f
i
(x)(i=1,2)具有二阶连续导数,且f
i
"(x)<0(i=1,2),若两条曲线y=f
i
(x)(i=1,2)在点(x
0
,y
0
)处具有公切线y=g(x),且在该点处曲线y=f
1
(x)的曲率大于曲线y=f
2
(x)的曲率,则在点x。的某个邻域内,有( )
选项
A、f
1
(x)≤f
2
(x)≤g(x)。
B、f
2
(x)≤f
1
(x)≤g(x)。
C、f
1
(x)≤g(x)≤f
2
(x)。
D、f
2
(x)≤g(x)≤f
1
(x)。
答案
A
解析
由f
i
"(x)<0(i=1,2)可知,f
1
(x)与f
2
(x)在x
0
,的某个邻域内都是凸函数,则y=f
1
(x)与y=f
2
(x)在x
0
的某个邻域内的图象均在点(x
0
,y
0
)处切线的下方,所以在x
0
的某个邻域内,f
1
(x)≤g(x),f
2
(x)≤g(x)。
又由曲率公式
可知
再由k
1
>k
2
可得f
1
"(x
0
)<f
2
"(x
0
)。
令F(x)=f
1
(x)-f
2
(x),则F’(x)=f
1
’(x)-f
2
’(x),F"(x)=f
1
"(x)-f
2
"(x),于是
F(x
0
)=0,F’(x
0
)=0,F"(x
0
)<0,
所以F(x)在x=x
0
处取到极大值,故在x
0
的某个邻域内,F(x)≤F(x
0
)=0,即f
1
(x)≤f
2
(x)。
综上所述,f
1
(x)≤f
2
(x)≤g(x)。故选A。
转载请注明原文地址:https://www.kaotiyun.com/show/M3k4777K
0
考研数学二
相关试题推荐
当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出全部非零公共解.
若向量组α,β,γ线性无关;α,β,δ线性相关,则
设A是3阶方阵,将A的第1列与第2列交换得B,再把B的第2列加到第3列得C,则满足AQ=C的可逆矩阵Q为
求微分方程y〞+5yˊ+6y=2e-x的通解.
证明函数y=x-ln(1+x2)单调增加.
某商品的销售量x是价格P的函数,如果欲使该商品的销售收入在价格变化情况下保持不变,则销售量x对于价格P的函数关系满足什么微分方程?在这种情况下该商品需求量相对价格P的弹性是多少?
证明:|arctanx-arctany|≤|x-y|
讨论f(x,y)=在点(0,0)处的连续性、可偏导性及可微性.
设A从原点出发,以固定速度v0沿y轴正向行驶,B从(x0,0)出发(x0<0),以始终指向点A的固定速度v1,朝A追去,求B的轨迹方程.
(2011年试题,三)已知函数F(x)=试求a的取值范围.
随机试题
不属于足外侧反射区的是()。
心理咨询的对象大多数是
茧唇主要的转移途径是乳岩主要的转移途径是
哪种流行病学调查不设专门对照哪种流行病学研究中,被研究的因素是人为控制的
滑苔最常见于
自动喷水灭火系统验收检查中需查验喷头备用量,国家工程消防技术标准规定各种不同规格的喷头的备用品数量不少于安装喷头总数的1%,且每种备用喷头不少于()个。
下列各项中,事业单位应当确认为事业支出的有()。
(2015年)下列各项关于“战略钟”中几种竞争战略的表述中,正确的有()。
如果正常照明因故中断,供继续工作和人员疏散的照明称为()。
组合框是文本框和()特性的组合。
最新回复
(
0
)