首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是3阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,λ3=-2的特征向量是ξ3. ξ2+ξ3是否是A的特征向量?说明理由;
A是3阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,λ3=-2的特征向量是ξ3. ξ2+ξ3是否是A的特征向量?说明理由;
admin
2018-07-23
79
问题
A是3阶矩阵,有特征值λ
1
=λ
2
=2,对应两个线性无关的特征向量为ξ
1
,ξ
2
,λ
3
=-2的特征向量是ξ
3
.
ξ
2
+ξ
3
是否是A的特征向量?说明理由;
选项
答案
ξ
2
+ξ
3
不是A的特征向量.假设是,设其对应的特征值为μ,则有 A(ξ
2
+ξ
3
)=μ(ξ
2
+ξ
3
), 得2ξ
2
-2ξ
3
-μξ
2
-μξ
3
=(2-μ)ξ
2
-(2+μ)ξ
3
=0, 因2-μ和2+μ不同时为零,故ξ
2
,ξ
3
线性相关,这和不同特征值对应的特征向量线性无关矛盾,故ξ
2
,ξ
3
不是A的特征向量.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Lzj4777K
0
考研数学二
相关试题推荐
(2002年试题,二)设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数尼,必有().
[*]
A、 B、 C、 D、 B
证明下列命题:设u(x,y),v(x,y)定义在全平面上,且满足则u(x,y),v(x,y)恒为常数.
微分方程y"+y=x2+1+sinx的特解形式可设为
二阶常系数非齐次线性微分方程y"-4y’+3y=2e2x的通解为y=_________.
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于
下列反常积分发散的是()
若f(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内
设X,Y是离散型随机变量,其联合概率分布为P{X=xi,Y=yj}=pij(i,j=1,2,…),边缘概率分别为piX和pjY(i,j=1,2,…),则X与Y相互独立的充要条件是pij=piXpjY(i,j=1,2,…)
随机试题
能缓解服用瓜蒂所致的呕吐不止的药物是
正常成人每24h的原尿可达()
肾脏重吸收物质最重要的部位是
患者女,43岁。以广泛性焦虑障碍入院,广泛性焦虑障碍的症状不包括
国际贸易中,CFR交货方式下买方的基本义务有()。
按照我国
作为资产评估客体的资产,存在形式是多种多样的,按()形式划分可将资产分为有形资产和无形资产。
关于投资性房地产转换日的确定,下列说法中,正确的有()。
Manyfinecooksinsistoningredientsofthehighestquality.
Impressionismisaformofartthatbeganinthe1870’s.Whenyoulookcloselyatanimpressionistpainting,youseelittledots
最新回复
(
0
)