首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αm(m>1)线性无关,且β=α1+α2+…+αm,证明:β-α1,β-α2,…,β-αm线性无关.
设向量组α1,α2,…,αm(m>1)线性无关,且β=α1+α2+…+αm,证明:β-α1,β-α2,…,β-αm线性无关.
admin
2021-02-25
55
问题
设向量组α
1
,α
2
,…,α
m
(m>1)线性无关,且β=α
1
+α
2
+…+α
m
,证明:β-α
1
,β-α
2
,…,β-α
m
线性无关.
选项
答案
设有数组λ
1
,λ
2
,…,λ
m
,使 λ
1
(β-α
1
)+λ
2
(β-α
2
)+…+λ
m
(β-α
m
)=0, 即 (λ
2
+λ
3
+…+λ
m
)α
1
+(λ
1
+λ
3
+…+λ
m
)α
m
+…+(λ
1
+λ
2
+…+λ
m-1
)α
m
=0, 由于α
1
,α
2
,…,α
m
线性无关,所以有 [*] 由于方程组的系数行列式 [*] 所以方程组只有零解,即λ
1
=λ
2
=…=λ
m
=0,故β-α
1
,β-α
2
,…,β-α
m
线性无关.
解析
本题考查向量组线性相关性的概念及判定.
转载请注明原文地址:https://www.kaotiyun.com/show/Li84777K
0
考研数学二
相关试题推荐
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
证明
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记un=f(n),n=1,2,…,又u1<u2,证明
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。将β1,β2,β3由α1,α2,α3线性表示。
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.(1)求A的其他特征值与特征向量;(2)求A.
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α1=(1,-1,a+2)T和向量组(II):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(II)等价?当以为何值
设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为P1=(1,2,2)T,P2=(2,1,一2)T,求A。
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
随机试题
《燕昭王求士》记叙了郭隗帮助燕昭王定计__________、振兴燕国的故事。
国际护士节定于()。
股指看跌期权合约卖方无需交纳交易保证金。()
Theroomwassoquietthatshecouldhearthe_____________ofherheart.
设f(x)=.
Advancingagemeanslosingyourhair,yourwaistlineandyourmemory,right?DanaDenisisjust40yearsold,but【1】she’sworrie
下列定义数组的语句中错误的是()。
以下叙述中正确的是()。
用高级程序设计语言编写的程序
Thescientist’ssuccessisduetohishardworkandhisabilityto______ofplanswhichwillgetworkdoneefficiently.
最新回复
(
0
)