首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
判断下列结论是否正确?为什么? (Ⅰ)若函数f(χ),g(χ)均在χ0处可导,且f(χ0)=g(χ0),则f′(χ0)=g′(χ0); (Ⅱ)若χ∈(χ0-δ,χ0+δ),χ≠χ0时f(χ)=g(χ),则f(χ)与g(χ)在χ=χ0处有相同
判断下列结论是否正确?为什么? (Ⅰ)若函数f(χ),g(χ)均在χ0处可导,且f(χ0)=g(χ0),则f′(χ0)=g′(χ0); (Ⅱ)若χ∈(χ0-δ,χ0+δ),χ≠χ0时f(χ)=g(χ),则f(χ)与g(χ)在χ=χ0处有相同
admin
2018-08-12
87
问题
判断下列结论是否正确?为什么?
(Ⅰ)若函数f(χ),g(χ)均在χ
0
处可导,且f(χ
0
)=g(χ
0
),则f′(χ
0
)=g′(χ
0
);
(Ⅱ)若χ∈(χ
0
-δ,χ
0
+δ),χ≠χ
0
时f(χ)=g(χ),则f(χ)与g(χ)在χ=χ
0
处有相同的可导性;
(Ⅲ)若存在χ
0
的一个邻域(χ
0
-δ,χ
0
+δ),使得χ∈(χ
0
-δ,χ
0
+δ)时f(χ)=g(χ),则f(χ)与g(χ)在χ
0
处有相同的可导性.若可导,则f′(χ
0
)=g′(χ
0
).
选项
答案
(Ⅰ)不正确.函数在某点的可导性不仅与该点的函数值有关,还与该点附近的函数值有关.仅有f(χ
0
)=g(χ
0
)不能保证f′(χ
0
)=g′(χ
0
).正如曲线y=(χ)与y=g(χ)可在某处相交但并不相切. (Ⅱ)不正确.例如f(χ)=χ
2
,g(χ)=[*]显然,当χ≠0时f(χ)=g(χ),但f(χ)在χ=0处可导,而g(χ)在χ=0处不可导(因为g(χ)在χ=0不连续). (Ⅲ)正确.由假设可得当χ∈(χ
0
-δ,χ
0
+δ),χ≠χ
0
时 [*] 故当χ→χ
0
时等式左右端的极限或同时存在或同时不存在,而且若存在则相等.再由导数定义即可得出结论.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/LQj4777K
0
考研数学二
相关试题推荐
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
设A是m×n矩阵,且m>n,下列命题正确的是().
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求
设a>0,讨论方程aex=x2根的个数.
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f"(x)-f(x)=0在(0,1)内有根.
设f(x)为偶函数,且满足f’(x)+2f(x)-3∫0x(t-x)dt=-3x+2,求f(x).
设A为n阶矩阵,且Ak=O,求(E-A)-1.
设A为二阶矩阵,且A的每行元素之和为4,且|E+A|=0,则|2E+A2|为().
设f(x,y)=讨论函数f(x,y)在点(0,0)处的连续性与可偏导性.
随机试题
求极限.
下列哪项是肝硬化的典型病理改变
病人小便不通,口苦咽干不欲饮,口臭口粘,纳呆,小腹胀满,大便粘腻不爽,舌红苔根黄腻,脉滑数尺弦紧。治疗宜首选:癃闭肝郁气滞重证可用沉香散合用何方:
正常情况下制作前牙金属烤瓷全冠的金-瓷衔接处应位于
引起咯血最常见的疾病是
电缆竖井中,宜每隔多少米设置阻火隔层?()
根据《民事诉讼法》的有关规定,关于撤回上诉的正确说法是()。
践更、过更
要选修数理逻辑课,必须已修普通逻辑课,并对数学感兴趣。有些学生虽然对数学感兴趣,但并没有修过普通逻辑课,因此,有些对数学感兴趣的学生不能选修数理逻辑课。以下哪项中的逻辑结构与题干最为类似?
A、800years.B、400years.C、550years.D、2,000years.D细节题。对话中谈到据文献记载,最古老的红杉树已有2000多年的历史了。
最新回复
(
0
)