首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(χ1,χ2,χ3)=χTAχ=3χ12+aχ22+3χ33-4χ1χ2-8χ1χ3 -4χ2χ3,其中-2是二次型矩阵A的一个特征值. (Ⅰ)用正交变换将二次型f化为标准形,并写出所用正交变换; (Ⅱ)如果A*+kE是正定矩阵,
设二次型f(χ1,χ2,χ3)=χTAχ=3χ12+aχ22+3χ33-4χ1χ2-8χ1χ3 -4χ2χ3,其中-2是二次型矩阵A的一个特征值. (Ⅰ)用正交变换将二次型f化为标准形,并写出所用正交变换; (Ⅱ)如果A*+kE是正定矩阵,
admin
2020-02-28
66
问题
设二次型f(χ
1
,χ
2
,χ
3
)=χ
T
Aχ=3χ
1
2
+aχ
2
2
+3χ
3
3
-4χ
1
χ
2
-8χ
1
χ
3
-4χ
2
χ
3
,其中-2是二次型矩阵A的一个特征值.
(Ⅰ)用正交变换将二次型f化为标准形,并写出所用正交变换;
(Ⅱ)如果A
*
+kE是正定矩阵,求k的取值范围.
选项
答案
(Ⅰ)A=[*] 由已知可得|-E-A|=0[*]a=6 [*] 对于λ
1
=λ
2
=7,(7E-A)χ=0, [*]α
1
=(1,-2,0)
T
,α
2
=(-1,0,1)
T
. 对于λ
3
=-2,(-2E-A)χ=0, [*]χ
3
=(2,1,2) 因为α
1
,α
2
不正交,由Schmidt正交化,有 [*] 再单位化,得 [*] 令Q=(γ
1
,γ
2
,γ
3
)=[*],则在正交变换χ=Qy下, 有χ
T
Aχ=y
T
Ay[*]7y
1
2
+7y
2
2
-2y
3
2
. (Ⅱ)|A|=7×7×(-2)=-98. 所以A
*
的特征值为-14,-14,49. 从而A
*
+kE的特征值为k-14,k-14.k+49. 因此k>14时,A
*
+kE正定.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/LJA4777K
0
考研数学二
相关试题推荐
假设:①函数y=f(x)(0≤x≤+∞)满足条件f(0)=0和0≤f(x)≤ex一1;②平行于y轴的动直线MN与曲线y=f(x)和y=ex一1分别相交于点P1和P2;③曲线y=f(x),直线MN与x轴所围成的封闭图形的面积S恒等于线段P1P2的长度。
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
求不定积分
设函数f(x)和g(x)和[a,b]上存在二阶导数,并且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=O,试证(1)在开区间(a,b)内g(x)≠0;(2)在开区间(a,b)内至少存在一点ε,使
设f(x)=,则下列结论中错误的是()
设3阶方阵A,B满足关系式A一1BA=6A+BA,且A=,则B=____________.
设A为三阶矩阵,A的第一行元素为1,2,3,|A|的第二行元素的代数余子式分别为a+1,a-2,a-1,则a=_______
设函数y=y(x)由参数方程确定,其中x(t)是初值问题
设有方程y’+P(x)y=x2,其中P(x)=试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
已知A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式。证明:aij=一Aij<=>ATA=E,且|A|=一1。
随机试题
肾结核的最主要的临床表现是()。
A.感染性休克B.心源性休克C.低血容量性休克D.过敏性休克E.神经源性休克
关于脑损伤病人降温的叙述中错误的是
链霉素引起的永久性耳聋属于()
建设项目负责人的内部职责包括()。
在设计合同中,计算“设计期限”的开始时间是( )。
甲公司委托乙公司进口一批生产原料,由乙公司在入境口岸办理报检手续,货物通关后由丙加工厂代为加工。关于《入境货物报检单》填制,以下表述正确的有()。
公安机关对犯罪分子有权采取()等措施。
一间宿舍可住多个学生,则实体宿舍和学生之间的联系是( )。
A、Englishlearningatschoolusuallytakesalongtime.B、MoreandmorepeoplewanttolearnEnglishnowadays.C、Itisnotneces
最新回复
(
0
)